
An Approach for Proving the Correctness of
Inspector/Executor Transformations

Michael Norrish1 and Michelle Mills Strout2

1 NICTA, michael.norrish@nicta.com.au
2 Colorado State University, michelle.strout@colostate.edu

Abstract. To take advantage of multicore parallelism, programmers
and compilers rewrite, or transform, programs to expose loop-level paral-
lelism. Showing the correctness, or legality, of such program transforma-
tions enables their incorporation into compilers. However, the correctness
of inspector/executor strategies, which develop parallel schedules at run-
time for computations with nonaffine array accesses, rests on the correct-
ness of the inspector code itself. Since inspector code is often provided
in a run-time library, showing the correctness of an inspector/execu-
tor transformation in a compiler requires proving the correctness of any
hand-written or compiler-generated inspector code as well. In this paper,
we present a formally defined language (called PseudoC) for representing
loops with indirect array accesses. We describe how using this language,
where the reads and writes in array assignments are distinguished, it is
be possible to formally prove the correctness of a wavefront parallelism
inspector in HOL4. The key idea is to reason about the equivalence of
the original code and the inspector/executor code based on operational
semantics for the PseudoC grammar and properties of an executable
action graph representation of the original and executor loops.

1 Introduction

Inspector/executor strategies refer to a category of program transformations that
apply to loop nests with non-affine memory references and loop bounds. The ex-
ecutor is a transformed version of the original code, and the inspector code
implements parallelization and/or run-time reordering by performing a data re-
ordering and/or a reordering of loop iterations into a new schedule. The new
schedules and/or data orderings are created to parallelize the loop and/or im-
prove the data locality.

In this paper, we focus on reordering iterations of a sequential loop into a
sequence of wavefronts, where all of the iterations within a wavefront can be
executed in parallel. A wavefront parallelism inspector/executor transformation
consists of the compile-time transformation of loops with non-affine array ac-
cesses, like the one in Figure 1, into an inspector and an executor as shown in
Figure 2. Assuming that the index arrays h, g, and f from Figure 1 are not
modified in the loop being transformed, the dependencies between iterations in
the original loop can be determined at runtime immediately before the execution
of the loop itself.

// ==== original executor

for (i=lb; i<ub; i++) {

A[h[i]]=...A[g[i]]

...A[f[i+1]]...

}

wavefront 0

wavefront 1

wavefront 2

A[3] = …A[3]…A[1]...

A[3] = …A[0]…A[5]...

A[4]=…A[1]…A[2]...

A[5]=…A[0]…A[5]... A[1]=…A[6]…A[7]

A[1]=…A[6]…A[4]…

Fig. 1: Example original code with indi-
rect array accesses and an example ac-
tion graph.

// ==== inspector

// Code that generates the data

// structures to represent

// iterations in each wavefront.

// ==== transformed executor

for (w=0; w<numwave; w++) {

parfor (i in wavefront(w)) {

A[h[i]]=...A[g[i]]

...A[f[i+1]]...

}

}

Fig. 2: The inspector and executor
code after applying the wavefront
parallelism transformation.

Figure 1 also illustrates what we call an action graph for the example loop
given that lb = 0, ub = 6, h[] = {4,3,3,5,1,7}, g[] = {1,3,0,0,6,6}, and
f[] = {-1,2,1,5,5,4,7}. Each node in the action graph contains all of the read
and write access information for a statement instance and enough information
about the statement to enable execution of that statement. The read and write
information as well as original execution order is used to connect nodes with
data dependence edges. The action graph differs from a dependence graph in
that a data-flow dependence graph just indicates the partial ordering between
iterations and is not executable.

Inspector strategies are quite prevalent in the literature [1–10]. They are im-
plemented manually [9], with code generators for specific kernels [10], and with
compilers inserting calls to run-time library inspectors [11]. The issue with all of
these approaches is that the inspector implementations are assumed to be cor-
rect. The inspector code is non-trivial because because its efficiency often derives
from specializing the implementation for a specific kernel and/or a restricted set
of kernels with certain characteristics, such as the sparse matrix data structure
being used.

In this paper, we present a formal strategy for proving the correctness of
inspectors that we are in the process of applying to the wavefront parallelization
inspector/executor transformation. The first realization is that we can break
out the reads and writes in the representation of the original computation, pro-
viding a convenient picture of a program’s memory behavior. This leads to our
language PseudoC, which is given a formal small-step operational semantics (one
that allows for interleaving across concurrent computations). We continue with
a general theorem connecting our formalization of the action graph view of a
program to its realization in PseudoC. This connection allows proofs of program
equivalence in the presence of iteration reordering and/or parallelization. Pre-

conditions on such results then serve as the formal specification of inspectors.
Still using the HOL4 theorem prover [12], we then show the correctness of a sim-
ple inspector that uses wavefronts. Mechanizing the full wavefront parallelization
inspector/executor is ongoing work.

Section 2 describes the applicability and limitations of the example origi-
nal computation and inspector/executor strategy. Section 3 indicates why the
typical approach to showing the legality of auto-parallelization and other pro-
gram transformations using data dependence abstractions is problematic. when
applying this approach to inspector/executor strategies. Section 4 presents the
PseudoC grammar that breaks out reads and writes to enable formal reasoning
about data dependencies. Section 5 describes how the proof is done in HOL4 us-
ing the action graph and small-step operational semantics for PseudoC. Section 6
summarizes related work, and Section 7 concludes.

2 Applicability of Wavefront Parallelization

Wavefront parallelization has been applied to applications such as sparse trian-
gular solvers [13], doacross loops in PERFECT benchmarks [14], and more re-
cently in various benchmarks and a proxy application called UMT (Unstructured
Mesh for Transport code) [15]. We developed a microbenchmark and wavefront
inspector/executor to use as an initial case study for developing an approach
to formally proving the correctness of inspector/executor transformations. This
section describes the micro-benchmark and presents some experimental results
to illustrate the applicability of the wavefront parallelization transformation.

The micro-benchmark, with the original code and executor shown in Fig-
ure 3, reads in a square, sparse matrix and uses the pattern of non-zero entries
in the sparse matrix to provide a do across loop dependence pattern3. For each
non-zero entry, the benchmark performs a parameterized summation involving
exponent calls to enable experimentation with the arithmetic intensity (flop-
s/byte). If the amount of work is set to zero, then no exp() calls will occur but
at least four adds will occur each iteration. The particular summation in the
inner loop was selected because it converges to a small number, which enables
easy testing. The result of the summation is added to the data array as indexed
by the row and column of the non-zero entries.

The wavefront executor is shown in Figure 3. The initial inspector for our case
study is serial, but we also plan to implement the parallel wavefront inspectors
by Rauchwerger et al. [14] and Zhuang et al. [15]. The serial inspector code in
our case study visits each iteration of the original loop in order and keeps track
of the last write and read for each data element in an array. This information
is used to determine the earliest wavefront in which to place an iteration while
still satisfying data dependencies.

We ran wavebench on an HP-Z800-Xeon E5520-SATA, 8 core 2.26GHz with
12GB of RAM, 32KB L1, 256KB L2, and two 8MB L3 caches, where each L3

3 If there is a non-zero at location Aij in the sparse matrix and i < j, then there is a
dependence between iteration i and j (i must execute before j).

// =========== Original Code ===========

// foreach non-zero Aij in sparse matrix:

for (int p=0; p<nnz; p++) {

// sum = Σw−1
k=0 1 / exp(k * data[row[p]] * data[col[p]])

double sum = 0.0;

for (int k=0; k<workPerIter; k++) {

sum += 1.0/ exp((double)k*data[row[p]]* data[col[p]]);

}

data[row[p]] += 1.0 + sum;

data[col[p]] += 1.0 + sum;

}

// =========== Executor =======

// for each wavefront

for (int w=0; w<= max_wave; w++) {

// foreach non-zero Aij in sparse matrix in wavefront

#pragma omp parallel for shared(data)

for (int k=wavestart[w]; k<wavestart[w+1]; k++) {

int p = wavefronts[k];

// same loop body as in Original Code

}

}

Fig. 3: The wavebench micro-benchmark original code and executor.

cache is shared by 4 cores. The sparse matrices used are from the Davis Florida
Collection [16] and range from 3.1 to 8.5 million non-zeroes.

Figure 4 shows the speedup of the executor for the five matrices we ran when
the number of exp() calls were set to 4. The average parallelism in the action
graph for each sparse matrix is shown in parentheses next to the sparse matrix
name. Average parallelism is the number of iterations divided by the number of
wavefronts, or critical path length. The inspector overhead was less than running
the executor once. Note that the 1d5pt.mm does not have any parallelism to
exploit, so wavefront parallelization only adds additional loop overhead.

As an exemplar, this micro-benchmark has many benefits. We can determine
when wavefront parallelism will be beneficial by modifying the amount of work
being performed in the inner loop. When the number of exp() calls is 4 or
above, all of the input matrices with parallelism have a speedup of 2 or higher.
This indicates that for this machine a computation would require a lot of work
within the loop for wavefront parallelism to be useful. The other benefit of this
micro-benchmark is that the dependencies between iterations in the loop are

Fig. 4: Speedup of the wavebench micro-benchmark on a Xeon 2x quad core.

not artificially generated. They derive from sparse matrices applicable to real
applications.

The limitation of the benchmark is that it is an artificial computation kernel
and we are only performing one inspector/executor strategy to it, specifically
wavefront parallelism. The simplicity of the computational kernel and the single,
non-parallel inspector ease the process of developing an approach to performing
formal verification of inspector/executor transformation correctness.

3 The Legality of Program Transformations

In the compilers research area, the legality of auto parallelization and program
transformations are determined by performing a data dependence analysis and
then checking whether the transformed representation of the program still sat-
isfies the original dependencies [17–20].

This approach for reasoning about transformation legality starts to collapse
under the weight of too many assumptions when applied to transformations
like wavefront parallelization that must satisfy dependencies in partially parallel
loops. In this Section, we review how dependence analysis has been used in the
past to determine transformation legality and indicate issues that arise when
applying this approach to inspector/executor transformations.

The data dependencies between computations (i.e., iterations in a loop) are
derivable from how each iteration reads and writes data. Data dependence anal-
ysis represents such data dependencies with various levels of precision [21]. For
computations with indirect array accesses, Wonnacott and Pugh [22] introduced

the idea of using uninterpreted function symbols to represent dependence rela-
tions in such codes at compile time. They used this representation to improve
the detection of fully parallel loops at compile-time, and they also suggested
using the approach to create run-time checks to determine parallelism. Hybrid
Analysis [23, 24] uses something they call a uniform set representation to per-
form as much data dependence analysis for parallelism detection at compile time
as possible with generated code that performs any necessary dynamic checks.

The Sparse Polyhedral Framework [25, 26] took the use of uninterpreted func-
tions in data dependence relations further than just detecting parallelization to
the determination of constraints on index arrays generated by inspector/execu-
tor strategies. Performing a data dependence analysis with petit (a tool available
with the Omega project [27]) and specifying the transformations as relations, a
manual proof of correctness using pre and post conditions was performed for the
full sparse tiling transformation applied to the Gauss-Seidel computation [28].

As an example of deriving such constraints, the data dependence relation for
the original kernel in the wavebench micro-benchmark in Figure 3 is:

{[p]→ [p′] | (p < p′) ∧ (0 ≤ p, p′ < nnz)

∧((row(p) = row(p′)) ∨ (row(p) = col(p′))

∨(col(p) = row(p′)) ∨ (col(p) = col(p′)))},

where row() and col() are uninterpreted function symbols representing the cor-
responding index arrays. Note that the variable sum is privatizable. It would
also be possible to detect that the full loop is a reduction, but for simplicity of
the micro-benchmark we ignore that and derive the dependencies caused by the
increment on the accesses to the data array.

The wavefront parallelization transformation can be expressed in the Sparse
Polyhedral Framework using the following relation: {[p]→ [w, p] | w = wave(p)},
where w is the iterator over wavefronts in Figure 3 and the p loop in the trans-
formed code is parallel. The transformed space [w, p] is executed in lexicograph-
ical order except for the p loop, which since it has been specified as parallel, will
execute in parallel for each instance of w. The waves loop with iterator w is exe-
cuted in sequential order. Applying this transformation to the data dependence
relation for the original loop results in the transformed dependencies:

{[w, p]→ [w′, p′] | w = wave(p) ∧ w′ = wave(p′)

∧(p < p′) ∧ (0 ≤ p, p′ < nnz)

∧((row(p) = row(p′)) ∨ (row(p) = col(p′))

∨(col(p) = row(p′)) ∨ (col(p) = col(p′)))}.

The transformed data dependence relation, and thus the transformation that
created it, is legal if the dependencies are all lexicographically positive. For this
example, this leads to the constraint that if there was an original dependence
between iteration p and p′, then it must be the case that wave(p) is strictly less
than wave(p′) to ensure that iteration p is executed before iteration p′ in the
new wavefront parallel schedule.

Current inspector/executor implementations of wavefront schedules such as [14,
15] present their inspector algorithms and argue that they place iterations from
the original loop into wavefronts so that the original dependencies are satisfied.
This approach for determining the correctness of inspector/executor transfor-
mations assumes that the data dependence analysis (often performed manually
for a particular class of computations) is correct and uses informal arguments to
show the inspector implementation is correct.

In this paper, we present an alternative approach that enables formally prov-
ing the correctness of an inspector/executor transformation without assuming
correct data dependence analysis or a correct inspector implementation. We use
a representation for the original code and the executor that separates the reads
from the writes in array assignment statements4. We then have a function that
interprets the PseudoC code while creating an action graph that tracks all reads
and writes. An action graph includes the data dependence relation information
as if the data dependence relation with uninterpreted functions had been explic-
itly realized at interpretation time, or run-time. Each node in the action graph
also maintains enough information so that the action graph is executable. We
have shown that execution of an action graph is equivalent to the PseudoC code
execution. Therefore, if transformations result in equivalent action graphs, they
are legal.

4 Expressing Codes in PseudoC

Figure 5 shows the grammar for our PseudoC language, which is rich enough
to represent original code with for loops and indirect array references, and the
case study inspector and executor. The operational semantics for some exam-
ple PseudoC statements are shown in Figure 6. The semantics relates pairs of
memories and pieces of PseudoC syntax.

The original code and the executor perform assignments to array elements
via the Assign production rule where the reads are represented as 〈dexpr〉s so
that the operational semantics can indicate the ability for reads and writes from
different iterations within a parallel loop to be interleaved. The first inference
rule in Figure 6 is for the Assign statement, which assigns a value to an array
element. Given that the conditions above the horizontal rule are true, then the
memory state m0 will updated to the memory state m and the Assign statement
will be replaced with the Done assignment, representing successful termination.
The value V(i) is an expression that has been fully evaluated to an integer i, in
this case representing the index at which the array will be updated.

When a ForLoop or a ParLoop is interpreted, the loop body is replicated as
many times as there are loop iterations. (In the original code and the executor, we
assume that all loops are bounded). Each copy of the loop body has instances of
the iterator variable replaced the appropriate value from the iteration’s domain.

4 Handling of scalar assignments is forthcoming, but those that are not privatizable
result in little if any parallelism in the loop.

The copies are then collected underneath a Seq or Par construct (Figure 6 shows
a ForLoop and therefore a Seq construct).

The final two rules in Figure 6 illustrate how loop bodies then evaluate with
Seq and Par constructors. In the Seq, the first iteration has to evaluate to com-
pletion before any others can evaluate. In the Par, any loop body can take a step
at any stage, representing the possible interleaving that parallel loops afford.

〈value〉 ::= Int 〈int〉
| Real 〈real〉
| Bool 〈bool〉
| Array 〈value list〉
| Error

〈expr〉 ::= VarExp 〈ident〉
| ISub 〈ident〉 〈expr〉
| 〈expr〉 〈binop〉 〈expr〉
| 〈unaryop〉 〈expr〉
| Value 〈value〉

〈dexpr〉 ::= DValue 〈value〉
| ARead 〈ident〉 〈expr〉
| VRead 〈ident〉

〈domain〉 ::= D 〈expr〉 〈expr〉

〈stmt〉 ::= Assign (〈ident〉, 〈expr〉) 〈dexpr-list〉
〈rhs-f 〉

| AssignVar 〈ident〉 〈expr〉
| IfStmt 〈expr〉 〈stmt〉 〈stmt〉
| Malloc 〈ident〉 〈int〉 〈value〉
| ForLoop 〈ident〉 〈domain〉 〈stmt〉
| ParLoop 〈ident〉 〈domain〉 〈stmt〉
| Seq 〈stmt-list〉
| Par 〈stmt-list〉
| Abort

| Done

Fig. 5: The abstract syntax tree grammar for the PseudoC language. To break
out the reads from the writes, the array element assignment Assign and the
variable assignment AssignVar statements include a list of 〈dexpr〉s and then a
lambda function called the right-hand side function 〈rhs-f 〉 that can map a list
of 〈value〉s to a single value.

(∀r ∈ reads. isValue(r)) upd array(m0, id , i, rhsf (reads)) = m

(m0, Assign((id ,V(i)), reads, rhsf)) −→ (m, Done)

evalexpr(m, e1) = l evalexpr(m, e2) = u

(m, ForLoop(id ,D(e1, e2), s)) −→ (m, Seq[s[id := l], s[id := l + 1], . . . , s[id := u− 1]])

(m0, s1) −→ (m, s)

(m0, Seq [s1, s2, ..., sn] −→ (m, Seq [s, s2, ..., sn])

(m0, c0) −→ (m, c)

(m0,Par [p, ..., c0, ..., s] −→ (m,Par [p, ..., c, ..., s])

Fig. 6: Example operational semantic rules for PseudoC.

5 Proof of Correctness

5.1 Original Code and Executor Equivalence

The heart of the correctness problem is verifying that, after the inspector has
done its work, the original code and the executor have the same effect. However,
the original code and the executor may execute their array assignments in radi-
cally different orders. To formally capture the equivalence between old and new
programs we map their syntax into a domain where non-conflicting assignments
can be executed in any order and compare the results there.

The domain we choose is the nested action graph. The nodes of these graphs
are either (recursively) sub-graphs themselves, or at the base case, pending array
assignments. Each node of the latter sort contains a list of read locations, a write
location and a function for turning the read values into a value to be written.
The read list of a sub-graph node is the union of all the reads in the sub-graph.
Sub-graph nodes also contain write lists, consisting of all the writes made in the
sub-graph. There is an edge between two nodes if they have overlapping write
lists, or if one has a read contained in the other’s write list. Given such a pair of
nodes, the direction of the edge depends on the ordering between those nodes’
assignments in the original program.

We refer to a node containing a pending assignment as atomic. Though such
a node contains memory reads and an eventual write that might interleave with
other nodes’ execution, such a node can only be executed when the dependence
edges allow it, meaning that modeling its execution as atomic is justified.

The behavior of graph on an input memory is computed by repeatedly re-
moving nodes with no incoming edges, and executing their assignments. Though
non-deterministic in its choice of nodes, this behaviour can only result in one
possible output memory. Similarly, parallel programs may exhibit transient non-
determinism, but if they are race-free, their execution will have only one possible
eventual result. If a program is not race-free, the action graph semantics cate-
gorizes this as an error: such a program has no corresponding action graph.

5.2 Creating Action Graphs from PseudoC

The function graphOf maps PseudoC programs to graphs. It is defined recursively
over the syntax of an executor program. Not all forms of PseudoC program are
convertible to action graphs; in particular, original code and executors cannot
include unbounded loops (e.g., while loops), nor Malloc calls.

Because the execution of graphOf must both unwind executors with param-
eterized (but bounded) loops, and decide which branch of if-statements are
taken, the graphOf function takes an initial memory value as a parameter. It
also computes the memory that will result from the execution of the graph, so
that updated memory values can be passed through the program recursively.
This can be seen in the clause for the ForLoop mapping in Figure 7.

The treatment of for-loops also demonstrates the use of and need for nested
action graphs: a loop’s body may contain multiple atomic assignments, or indeed

graphOf m0 (ForLoop v d body) =
do

dvs ← dvalues m0 d;
FOLDL (λacc v.

do
(m, g) ← acc;
(m′, sg) ← graphOf m (body [vnm := v]);
SOME(m′,

g ⊕ 〈 reads := greads(sg);writes := gwrites(sg);
data := sg〉)

od)
(SOME(m0, ε))
dvs

od

Fig. 7: Calculating the graph of a for loop. This is a simplified version of the
function defined in HOL4. The FOLDL folds (or “reduces”) the computation
of the graph. It begins with the input memory m0 and an empty graph (ε).
Each iteration over the loop values (dvs) then returns an updated version of
each, calculating a sub-graph (sg), embedding this into a node (between the
angle-brackets), and adding that node to the accumulating graph.

more, nested loops. When we perform our wavefront analysis, we want to sched-
ule entire loop bodies as a unit. The unit of computation with action graphs is
a single node, so loop bodies consisting of multiple atomic actions need to have
those actions bundled together into a sub-graph that is then treated as a single
node at the higher level.

The graph construction for parallel loops is given in Figure 8.

Theorem 1. For all PseudoC programs p, if there exists a g such that g =
graphOf(p), then the program has only one possible behavior, which is the same
as that obtained by executing the graph g.

(This result has been mechanically verified in HOL4 for a version of the
graphOf function which maps to non-nested, “flat” graphs. The mechanical ver-
ification of the translation to nested graphs is underway.)

5.3 Characterizing Equivalence

With a correct action graph semantics in hand, the next step in our approach to
showing inspector/executor correctness is to characterize the conditions under
which the equivalence will hold. In essence, the task is to prove a theorem of the
form

〈inspector post-condition〉 ⇒ graphOf(old) = graphOf(new)

We have not yet proved a theorem of this shape for the parallelizing wavefront
transformation, but we can illustrate our approach with a simple example that

graphOf m0 (ParLoop vnm d body) =
do

dvs ← dvalues m0 d;
ns ← MAP (λv. do (m, sg) ← graphOf m0 (body[vnm := v]);

SOME(〈 reads := greads(sg);writes := gwrites(sg);
data := sg〉)

od) dvs;
assert(∀i j. i < j < |ns| ⇒ nsi 6∼t nsj);
g ← SOME(FOLDR(λa g. a⊕ g) ε ns);
m ← nagEval g (SOME m0);
SOME(m, g)

od

Fig. 8: Calculating the action graph of a ParLoop. The sub-graphs are calculated
independently, under the MAP, which iterates over the loop’s domain values
dvs. The memory resulting from each sub-graph computation (m) is ignored
rather than being the basis for the execution of the next iterations as in the
handling of ForLoop. The assert checks that none of the calculated sub-graphs
have a dependence between each other. The final graph is assembled by adding
all of the nodes in ns to an empty graph, and the final memory is calculated by
evaluating that final graph with the graph evaluation function, nagEval.

has been mechanically verified. This iteration reordering imagines a loop with a
body of the form

A[W(i)] = ... A[R1(i)] ... A[Rn(i)] ...

where the assignment target is a function W of the iteration index (perhaps via
an indirection array), and where the n reads are mediated through the various
Ri functions (again, possibly indirection arrays).

We have mechanically proved the following:

Theorem 2. With W and R specifying the program’s write and read informa-
tion as above, let ddepR(W,R, i, j) be true iff iteration i comes before iteration j
and they have the same write, or if one writes to one of the other’s reads. Then

(∀i j. i < j < N ∧ ddepR(W,R, i, j)⇒ δ−1(i) < δ−1(j))∧
δ : {0 . . . N − 1} → {0 . . . N − 1} a bijection
⇒

(for(i=0;i<N;i++) {A[W (i)] = . . . A[Rj(i)] . . . }) =
(for(i=0;i<N;i++) {A[W (δ(i))] = . . . A[Rj(δ(i))] . . . })

Alternatively: as long as the inverse of the new indirection array/function does
not change the order of iterations that are connected with a data dependence, the
new executor will be equivalent to the old.

The proof of this result depends heavily on the existence of the action graph
domain into which the for-loops are mapped.

5.4 Verifying the Inspector

When a theorem of the above form has been proved, the final stage of the
verification can be performed. That is, we must now confirm that the inspector
establishes the desired post-condition. Note that, as in the example above, we
aim to prove as general a post-condition as possible. If this is done, correct
inspectors may compute different reorderings or parallelizations.

Continuing our iteration reordering example, we have mechanically verified
that a permissible inspector is one that ordered iterations by their wavefront
number. This is our last mechanically verified theorem:

Theorem 3. Sorting the iterations of a simple for loop with respect to the it-
erations’ wavefront number generates a δ-function that is both a bijection over
the for-loop’s domain, and respects the dependence relation. This δ can then be
used to correctly reorder iterations, as per the equivalence of Section 5.3.

Even this much leaves aspects of the inspector’s implementation under-specified.
Open questions include, how should an inspector correctly generate iterations’
wave numbers, particularly as it will not have access to the complete action
graph since that would be too expensive to compute at runtime?

5.5 Limitations and Future Work

We do not expect that correct transformations will ever be easy to verify. Rather,
our goal is to establish a verified library, one that couples verified executor
transformations with families of verified inspectors. These inspectors will have
been to shown to meet the transformations’ preconditions, allowing programmers
and compilers to deploy them safely.

The transformations will need to be as general as possible in two ways: with
general preconditions allowing multiple inspector strategies, and embodying gen-
eral patterns of code transformations.

Our mechanization effort is still ongoing, but we are confident that the ap-
proach sketched here is a viable strategy. There is still more to be done:

– we want to express inspector implementations in a higher level language
than PseudoC, one where relevant notions such as binary relations and the
operations on them are first-class;

– nonetheless, such a high-level language should have a verified translation to
PseudoC;

– we would like to formally capture the compile-time syntactic analysis that
leads to the inspector’s static knowledge of where reads and writes occur are
possible.

6 Related Work

Inspector/executor strategies were developed to find shared-memory, partial par-
allelism in doacross loops [1, 2] and to implement distributed memory paral-

lelism between doall loops that accessed distributed data [3]. Later data reorder-
ing transformations [4–7] and more complex sparse tiling transformations [8–10]
were developed.

Other related work includes formally showing the correctness of compilers
and translators, which is an exciting area of recent research progress. The Com-
pCert compiler by Leroy [29] has been formally shown to correctly translate a
mildly restricted subset of C to x86 assembly code with equivalent semantics.
The CompCert compiler performs register allocation, instruction scheduling, and
some data-flow optimizations, but does not include any parallelization optimiza-
tions.

In the context of irregular applications with indirect array accesses, Gilad
and Bodik [30] have developed a domain-specific language LL for transforming
dense matrices into various sparse matrix formats and showing the equivalence of
computations on the sparse matrix format to the corresponding computation on
the dense matrix format. This work is relevant to inspector/executor strategies as
the conversion between sparse matrix formats is typically done with an inspector.
However, this work does not look at parallelization transformations.

7 Conclusions

Parallelization transformations in compilers are typically determined correct
based on data dependence analysis and reasoning about how parallelization,
possibly in combination with other transformations, continue to satisfy such
dependencies. This approach assumes too much especially in the context of ir-
regular applications with indirect memory references where it is necessary to
assume that the data dependence analysis is correct and that the inspector code
is correct as well. In this paper, we present a new approach for determining the
correctness of an inspector/executor strategy, ultimately aiming to provide a li-
brary of verified inspector/executor parallelization transformations. All code (the
original code, inspector, and executor) are represented in our PseudoC language,
which separates reads from writes. This language has two formal semantics: a
small-step operational semantics where reads and writes in separate iterations
of a parallel loop can execute concurrently, and one in terms of action graphs.
The action graph semantics allows the proof of program equivalences subject
to certain conditions. Inspector correctness then depends on showing that these
conditions are met. Important preliminaries and simple examples have already
been fully mechanized in HOL4; and work toward a fully verified wavefront par-
allelization transformation is ongoing.

8 Acknowledgements and Availability

This project is supported by a Department of Energy Early Career Grant DE-
SC0003956. NICTA is funded by the Australian Government through the De-
partment of Communications and the Australian Research Council through the
ICT Centre of Excellence Program.

Our source code is available from github at https://github.com/mn200/

inspector-strategies

References

1. Saltz, J.H.: Aggregation methods for solving sparse triangular systems on multi-
processors. SIAM Journal on Scientific and Statistical Computing 11(1) (1990)
123–144

2. Koelbel, C., Mehrotra, P.: Compiling global name-space parallel loops for dis-
tributed execution. Parallel and Distributed Systems, IEEE Transactions on 2(4)
(Oct 1991) 440–451

3. Saltz, J., Chang, C., Edjlali, G., Hwang, Y.S., Moon, B., Ponnusamy, R., Sharma,
S., Sussman, A., Uysal, M., Agrawal, G., Das, R., Havlak, P.: Programming irregu-
lar applications: Runtime support, compilation and tools. Advances in Computers
45 (1997) 105–153

4. Mitchell, N., Carter, L., Ferrante, J.: Localizing non-affine array references. In:
Proceedings of the International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), Los Alamitos, CA, USA, IEEE Computer Society
(October 1999) 192–202

5. Ding, C., Kennedy, K.: Improving cache performance in dynamic applications
through data and computation reorganization at run time. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, New York, NY, USA, ACM (May 1999) 229–241

6. Han, H., Tseng, C.W.: Efficient compiler and run-time support for parallel irregular
reductions. Parallel Computing 26(13–14) (December 2000) 1861–1887

7. Mellor-Crummey, J., Whalley, D., Kennedy, K.: Improving memory hierarchy
performance for irregular applications using data and computation reorderings.
International Journal of Parallel Programming 29(3) (2001) 217–247

8. Douglas, C.C., Hu, J., Kowarschik, M., Rüde, U., Weiß., C.: Cache Optimization for
Structured and Unstructured Grid Multigrid. Electronic Transaction on Numerical
Analysis (February 2000) 21–40

9. Strout, M.M., Carter, L., Ferrante, J., Freeman, J., Kreaseck, B.: Combining
performance aspects of irregular Gauss-Seidel via sparse tiling. In: Proceedings of
the 15th Workshop on Languages and Compilers for Parallel Computing (LCPC),
Berlin / Heidelberg, Springer (July 2002)

10. Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K.: Minimizing communi-
cation in sparse matrix solvers. In: Supercomputing, New York, NY, USA, ACM
(2009)

11. Das, R., Uysal, M., Saltz, J., Hwang, Y.S.S.: Communication optimizations for
irregular scientific computations on distributed memory architectures. Journal of
Parallel and Distributed Computing 22(3) (1994) 462–478

12. Slind, K., Norrish, M.: A brief overview of HOL4. In Mohamed, O.A., Muñoz,
C., Tahar, S., eds.: Theorem Proving in Higher Order Logics, 21st International
Conference. Volume 5170 of Lecture Notes in Computer Science., Springer (2008)
28–32 See also http://hol.sourceforge.net.

13. Saltz, J.H.: Automated problem scheduling and reduction of communication delay
effects. Technical report, Yale University (1987)

14. Rauchwerger, L., Amato, N.M., Padua, D.A.: A scalable method for run-time
loop parallelization. International Journal of Parallel Programming 23(6) (1995)
537–576

15. Zhuang, X., Eichenberger, A., Luo, Y., O’Brien, K., O’Brien, K.: Exploiting paral-
lelism with dependence-aware scheduling. In: International Conference on Parallel
Architectures and Compilation Techniques (PACT), Los Alamitos, CA, USA, IEEE
Computer Society (2009) 193–202

16. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1) (December 2011) 1:1–1:25

17. Banerjee, U., Eigenmann, R., Nicolau, A., Padua, D.A.: Automatic program par-
allelization. Proceedings of the IEEE 81(2) (1993) 211–243

18. Lengauer, C.: Loop parallelization in the polytope model. In: CONCUR ’93,
Lecture Notes in Computer Science 715, Springer-Verlag (1993) 398–416

19. Feautrier, P.: Automatic parallelization in the polytope model. In: The Data
Parallel Programming Model. (1996) 79–103

20. Kennedy, K., Allen, J.R.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (2002)

21. Yang, Y.Q., Ancourt, C., Irigoin, F.: Minimal data dependence abstractions for
loop transformations: Extended version. International Journal of Parallel Program-
ming 23(4) (1995) 359–388

22. Pugh, W., Wonnacott, D.: Nonlinear array dependence analysis. In: Third Work-
shop on Languages, Compilers, and Run-Time Systems for Scalable Computers,
Troy, New York (May 1995)

23. Rus, S., Hoeflinger, J., Rauchwerger, L.: Hybrid analysis: static & dynamic memory
reference analysis. International Journal Parallel Programming 31(4) (2003) 251–
283

24. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop paralleliza-
tion. In: Proceedings of the 33rd ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation. PLDI ’12, New York, NY, USA, ACM (2012)
509–520

25. Strout, M.M., Carter, L., Ferrante, J.: Compile-time composition of run-time data
and iteration reorderings. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), New York, NY, USA,
ACM (June 2003)

26. Strout, M.M., LaMielle, A., Carter, L., Ferrante, J., Kreaseck, B., Olschanowsky,
C.: An approach for code generation in the sparse polyhedral framework. Technical
Report CS-13-109, Colorado State University (December 2013)

27. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The
omega calculator and library, version 1.1.0 (November 1996)

28. Strout, M.M., Carter, L., Ferrante, J.: Proof of correctness for sparse tiling of gauss-
seidel. Technical report, UCSD Department of Computer Science and Engineering,
Technical Report #CS2003-0741 (April 2003)

29. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7) (July
2009) 107–115

30. Arnold, G., Hölzl, J., Köksal, A.S., Bod́ık, R., Sagiv, M.: Specifying and verifying
sparse matrix codes. In: Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming (ICFP). ICFP ’10, New York, NY, USA,
ACM (2010) 249–260

