
Improving Interrupt Response Time
in a Verifiable Protected Microkernel

Bernard Blackham, Yao Shi and Gernot Heiser
NICTA and University of New South Wales, Sydney, Australia

First.Last@nicta.com.au

Abstract
Many real-time operating systems (RTOSes) offer very
small interrupt latencies, in the order of tens or hundreds
of cycles. They achieve this by making the RTOS kernel
fully preemptible, permitting interrupts at almost any point
in execution except for some small critical sections. One
drawback of this approach is that it is difficult to reason
about or formally model the kernel’s behavior for verifica-
tion, especially when written in a low-level language such
as C.

An alternate model for an RTOS kernel is to permit in-
terrupts at specific preemption points only. This controls
the possible interleavings and enables the use of techniques
such as formal verification or model checking. Although
this model cannot (yet) obtain the small interrupt laten-
cies achievable with a fully-preemptible kernel, it can still
achieve worst-case latencies in the range of 10,000s to
100,000s of cycles. As modern embedded CPUs enter the
1 GHz range, such latencies become acceptable for more
applications, particularly when they come with the addi-
tional benefit of simplicity and formal models. This is par-
ticularly attractive for protected multitasking microkernels,
where the (inherently non-preemptible) kernel entry and exit
costs dominate the latencies of many system calls.

This paper explores how to reduce the worst-case inter-
rupt latency in a (mostly) non-preemptible protected kernel,
and still maintain the ability to apply formal methods for
analysis. We use the formally-verified seL4 microkernel as a
case study and demonstrate that it is possible to achieve rea-
sonable response-time guarantees. By combining short pre-
dictable interrupt latencies with formal verification, a design
such as seL4’s creates a compelling platform for building
mixed-criticality real-time systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’12, April 10–13, 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design—Real-time systems and
embedded systems; D.4.5 [Operating Systems]: Reliability—
Verification; D.4.8 [Operating Systems]: Performance—
Modeling and prediction

General Terms Design, Performance, Reliability

Keywords Microkernels, worst-case execution time, hard
real-time systems, trusted systems, formal verification

1. Introduction
Hard real-time systems are regularly deployed in critical en-
vironments such as cars, aircraft and medical devices. These
systems demand both functional correctness as well as pre-
cise timing guarantees. A failure to meet either functional
or timing requirements may result in catastrophic conse-
quences. As manufacturers strive to gain a competitive ad-
vantage by combining both critical and convenience func-
tionality, the overall complexity of devices has increased.
Maintaining the stringent demands on safety and reliability
of these systems is paramount.

One approach to improve reliability is to physically sepa-
rate critical subsystems onto separate processors, with min-
imal interference from other subsystems. Whilst this ap-
proach has its benefits, it does not scale to the more com-
plex devices being created today, which would require tens
or possibly hundreds of processors, each servicing different
subsystems. The added weight, cost and power consumption
of these processors are severe drawbacks to this approach. It
also provides poor support for (controlled) communication
between the otherwise isolated subsystems; in an embedded
system, where all subsystems cooperate to achieve the over-
all system mission, this can result in performance degrada-
tion and increased energy use.

An alternative approach is to consolidate multiple subsys-
tems onto a single processor, and use a trustworthy supervi-
sor to provide functional and temporal isolation [Mehnert
2002]. The supervisor also provides controlled communica-
tion between selected components. This approach is repre-
sented in Figure 1. The supervisor may be a microkernel,
hypervisor or protected real-time operating system (RTOS),

323

mailto:Bernard.Blackham@nicta.com.au

CPU

Microkernel/hypervisor

App AppRT App

Figure 1. A trustworthy microkernel or hypervisor can be
used to provide functional and temporal isolation between
distinct components executing on a single processor.

and should have a small trusted code base. The supervisor
must be able to provide the required temporal guarantees
such that all real-time deadlines can be met, and also pro-
tect components from each other.

seL4 [Klein 2009b] is the world’s first formally-verified
general-purpose operating system kernel. seL4 offers a
machine-checked proof that the C implementation adheres
to a formal specification of the kernel’s behaviour. seL4 is a
third-generation microkernel broadly based on the concepts
of L4 [Liedtke 1995]. It provides virtual address spaces,
threads, inter-process communication and capabilities [Den-
nis 1966] for managing authority.

We have previously shown that the design of seL4 enables
a complete and sound analysis of worst-case interrupt re-
sponse time [Blackham 2011a]. Combining this with formal
verification makes seL4 a compelling platform for building
systems with critical hard real-time functionality co-located
with other real-time or best-effort components. The size and
structure of seL4’s code base have also been key ingredi-
ents to the successful formal verification of its functional
behaviour.

Like most of its predecessor L4 kernels, seL4 disables
interrupts throughout kernel execution, except at specific
preemption points. This was originally done to optimise
average-case performance, at the expense of increased in-
terrupt latency. However, it was also essential to making
the formal verification of the functional behaviour of seL4
tractable. As a consequence, seL4 is unable to achieve the
very short interrupt latencies of a fully-preemptible kernel
(within hundreds of cycles). However, with embedded pro-
cessor speeds of 1 GHz or higher becoming common-place,
many applications on these platforms can tolerate latencies
in the tens of thousands, or even hundreds of thousands of
cycles. We show that seL4 is able to guarantee worst-case
latencies of this magnitude, whilst retaining the ability to of-
fer strong functional guarantees.

Mixed-criticality systems with reasonable latency re-
quirements are therefore well-suited to this model. Some
examples include medical implants, or automotive systems
for braking or ABS. These devices demand functional and
temporal correctness but their required latencies are in the
order of milliseconds.

In this paper, we explore the limits of the response time of
a verified protected microkernel such as seL4. Previous anal-
yses have been instrumental in the development of seL4’s
real-time properties [Blackham 2011a;b]. We describe the
bottlenecks encountered in achieving suitable real-time per-
formance and the challenges associated with overcoming
them. Although re-verification of these changes is ongoing
work, it is largely mechanical and similar in nature to other
proof maintenance activities over the past two years.

2. Avoiding Preemption in the Kernel
OS kernels are typically developed using either a process-
based model or an event-based model supporting multi-
threading. In the process-based model, each thread is al-
located a dedicated kernel stack. This kernel stack is used
for handling requests on behalf of the thread, and implicitly
stores the state of any kernel operation in progress through
the contents of the call stack and local variables stored on
the stack.

A process-based kernel lends itself to being made fully
preemptible. With some defensive coding, an interrupt can
be permitted almost anywhere in the kernel, allowing for
very short interrupt response times.

An event-based kernel uses a single kernel stack to han-
dle requests for all threads on the system. This reduces mem-
ory consumption significantly, but changes the way in which
preemption can be handled. In the general case, this stack
cannot be shared amongst multiple threads as doing so could
result in deadlock due to stack blocking. Scheduling disci-
plines such as the stack resource policy [Baker 1991] are
able to re-use stacks and avoid this. However, seL4 is not
bound to a specific scheduling discipline – currently, a fixed-
priority preemptive scheduler is used, and alternatives are in
development.

To preempt threads running on a single kernel stack,
preemption points are manually inserted into seL4 to detect
and handle pending interrupts. If an interrupt is pending, the
state of the current operation must be explicitly saved.

Continuations can be used in an event-based kernel to ef-
ficiently represent the saved state of a kernel operation that
has blocked or been preempted [Draves 1991]. A continu-
ation specifies (a) the function that a thread should execute
when it next runs; and (b) a structure containing any nec-
essary saved state. Using continuations allows a thread to
discard its stack whilst it is blocked or preempted.

324

L4 kernels have traditionally been process-based but not
fully preemptible1. The process-based kernel had previously
been claimed to be more efficient in the presence of frequent
context switching [Liedtke 1993], leading to this favoured
design. However, experiments on modern ARM hardware
have shown a negligible difference between the two mod-
els [Warton 2005]. Furthermore, in a microkernel-based sys-
tem, kernel execution tends to be dominated by fast inter-
process communication (IPC) operations; there is little ben-
efit in making the microkernel fully-preemptible, as long as
the worst-case latencies of the longer-running operations are
kept reasonable through well-placed preemption points.

2.1 Design of seL4
As seL4 is event-based, context switches involve no stack
manipulation. This simplifies formal verification, as the seL4
code has a standard procedural control flow like any regular
C program. The most common operations in seL4 (IPC) are
designed to be short. However, object creation and deletion
operations are necessarily longer, as they require iterating
over potentially large regions of memory and manipulating
complex data structures.

In seL4, a preempted operation is effectively a restartable
system call. Interrupts are disabled in hardware during ker-
nel execution, and handled when encountering a preemption
point or upon returning to the user. At a preemption point,
any necessary state for the preempted operation is saved as
seL4 returns up the call stack. The system is left in a state
where simply re-executing the original system call will con-
tinue the operation.

This is in contrast to using continuations for each thread
and maintaining the state of the operation in progress. By not
using continuations, the amount of code required is reduced,
as the safety checks needed for resuming a preempted oper-
ation are similar to those required for starting the operation
from scratch; kernel re-entry automatically re-establishes the
required invariants. It also simplifies reasoning about the
kernel’s correctness: it is not necessary to reason about what
state a preempted thread is in and whether it was performing
an operation, instead it suffices to reason about the state of
objects in the system.

This design leads to a small amount of duplicated ef-
fort, as the system call must be decoded again each time a
preempted operation is resumed. However, the code paths
taken are likely to be hot in the CPU’s caches. Work on the
Fluke kernel demonstrated that these overheads are negligi-
ble [Ford 1999].

Incremental Consistency A noteworthy design pattern in
seL4 is an idea we call incremental consistency: large com-
posite objects are composed of individual components that
can be added or deleted one-at-a-time. Specifically, there is

1 There are some exceptions: the L4-based Fiasco kernel [Hohmuth 2002]
is process-based and also preemptible; both OKL4 [Heiser 2010] and seL4
use a single kernel stack and are therefore not fully preemptible.

always a constant-time operation that will partially construct
or deconstruct a large composite object and still maintain
a coherent system. In seL4, this is relevant to objects such
as address spaces and book-keeping data structures, which
commonly pose significant issues in deletion paths.

Although a simple concept, it is not trivial to maintain in
a system with complex data structures and intricate depen-
dencies between them. Ensuring that composite objects can
be incrementally created and destroyed has benefits for ver-
ification and also naturally lends itself to preemption.

2.2 Proof Invariants of seL4
In seL4, consistency of the kernel is defined by a set of
formalised invariants on the kernel’s state and in turn all
objects in the kernel. There are in fact hundreds of invariants
and lemmas that are maintained across all seL4 operations.
These include:

• well-formed data structures: structures such as linked
lists are well-formed – i.e., there are no circular links
and all back-pointers point to the correct node in doubly-
linked lists;

• object alignment: all objects in seL4 are aligned to their
size, and do not overlap in memory with any other ob-
jects;

• algorithmic invariants: some optimisations in seL4 de-
pend on specific properties being true, allowing redun-
dant checks to be eliminated;

• book-keeping invariants: seL4 maintains a complex data-
structure that stores information about what objects exist
on the system and who has access to them. The integrity
of seL4 depends on the consistency of this information.

The formally-verified seL4 code base proves that all ker-
nel operations will maintain all of the given invariants. Any
modifications to seL4 require proving that these invariants
still hold, in addition to proving that the code still correctly
implements the specification of the kernel. Therefore, for
each preemption point that we add to seL4, we must cor-
respondingly update the proof in order to maintain these in-
variants.

In some cases, it is not possible to maintain all invariants,
in which case the invariant may be replaced by a weaker
statement. The weakened invariant must be sufficient to sat-
isfy the remainder of the proof over the whole kernel. If an
aspect of the proof fails with the weakened invariant, this
generally suggests that a bug has been introduced and that
extra safety checks may be required in the code.

3. Areas of Improvement
In this section, we look at some of the long-running oper-
ations in seL4 and examine how to either add suitable pre-
emption points or replace the operations with better algo-
rithms. Most of these operations, whilst presented in the con-

325

thread_t chooseThread() {
foreach (prio in priorities) {

foreach (thread in runQueue[prio]) {
if (isRunnable(thread))
return thread;

else
schedDequeue(thread);

}
}
return idleThread;

}

Figure 2. Pseudo-code of scheduler implementing lazy
scheduling.

text of seL4, are typical of any OS kernel providing abstrac-
tions such as protected address spaces, threads and IPC.

There are some operations that may be found in other OS
kernels which are not present in seL4. One example is the
absence of any memory allocation routines. Almost all al-
location policies are delegated to userspace; seL4 provides
only the mechanisms required to enforce policies and en-
sure they are safe (e.g. checking that objects do not over-
lap) [Elkaduwe 2007]. This design decision removes much
of the complexity of a typical allocator from seL4 as well as
some potentially long-running operations.

3.1 Removal of Lazy Scheduling
The original version of seL4 featured an optimisation known
as lazy scheduling. Lazy scheduling attempts to minimise
the manipulation of scheduling queues on the critical path of
IPC operations [Liedtke 1993], and has traditionally been
used in almost all L4 kernels (Fiasco is an exception). It
is based on the observation that in L4’s synchronous IPC
model, threads frequently block while sending a message to
another thread, but in many cases the other thread replies
quickly. Multiple such ping-pongs can happen on a single
time slice, leading to repeated de-queueing and re-queueing
of the same thread in the run queue.

Lazy scheduling leaves a thread in the run queue when
it executes a blocking IPC operation. When the scheduler is
next invoked, it dequeues all threads which are still blocked.
Pseudo-code for a scheduler implementing lazy scheduling
is shown in Figure 2.

Lazy scheduling can lead to pathological cases where the
scheduler must dequeue a large number of blocked threads
(theoretically only limited by the amount of memory avail-
able for thread control blocks), which obviously leads to hor-
rible worst-case performance. As the scheduler is responsi-
ble for determining which thread to run next, it is not fea-
sible or even meaningful to add a preemption point to this
potentially long-running operation.

We therefore had to change the scheduling model so that
only runnable threads existed on the run queue. In order to

thread_t chooseThread() {
foreach (prio in priorities) {
thread = runQueue[prio].head;
if (thread != NULL)

return thread;
}
return idleThread;

}

Figure 3. Pseudo-code of scheduler without lazy schedul-
ing.

maintain the benefits of lazy scheduling, we use a different
scheduling trick, (internally known as “Benno scheduling”,
after the engineer who first implemented it in an earlier ver-
sion of L4): when a thread is unblocked by an IPC operation
and, according to its priority, it is able to execute immedi-
ately, we switch directly to it and do not place it into the run
queue (as it may block again very soon). The run queue’s
consistency can be re-established at preemption time, when
the preempted thread must be entered in the run queue if it is
not already there. This has the same best-case performance
as lazy scheduling, but maintains good worst-case perfor-
mance, as only a single thread (the presently running one)
may have to be enqueued lazily.

In this model the implementation of the scheduler is sim-
plified, as it now just chooses the first thread of highest pri-
ority, as demonstrated in the pseudo-code listing in Figure 3.
There is an existing invariant in the kernel that all runnable
threads on the system are either on the run queue or currently
executing. This is sufficient for lazy scheduling, but Benno
scheduling obviously requires an additional invariant which
must be maintained throughout the kernel: that all threads on
the scheduler’s run queue must be in the runnable state.

This seemingly simple C code change impacts the proof
in all functions that alter a thread’s state, or modifies the
scheduler’s run queue. The invariant must be proven true
when any thread ceases to be runnable and when any thread
is placed onto the run queue.

3.2 Scheduler Bitmaps
We added one more optimisation to the scheduler: a bitmap
representing the priorities that contain runnable threads. We
make use of ARM’s count leading zeroes (CLZ) instruction
which finds the highest set bit in a 32-bit word, and executes
in a single cycle. seL4 supports 256 thread priorities, which
we represent using a two-level bitmap. The 256 priorities are
divided into 8 “buckets” of 32 priorities each. The top-level
bitmap contains 8 bits each representing the existence of
runnable threads in any of the 32 priorities within a bucket.
Each bucket has a 32-bit word with each bit representing
one of the 32 priorities. Using two loads and two CLZ
instructions, we can find the highest runnable priority very

326

efficiently, and have thus removed the loop from Figure 3
altogether.

This optimisation technique is commonly found in OS
schedulers and has reduced the WCET of seL4 in several
cases. However, it introduces yet another invariant to be
proven: that the scheduler’s bitmap precisely reflects the
state of the run queues. As this is an incremental change
to the existing scheduler, the re-verification effort is signifi-
cantly lowered.

3.3 Aborting IPC Operations
Threads in seL4 do not communicate directly with each
other; they instead communicate via endpoints which act as
communication channels between threads. Multiple threads
may send or receive messages through an endpoint. Each
endpoint maintains a linked list of all threads waiting to send
or receive a message. Naturally, this list can grow to an arbi-
trary length (limited by the number of threads in the system,
which is limited by the amount of physical memory that can
be used for threads, which in turn is theoretically limited by
the size of free physical memory after the kernel boots). The
length of this list is not an issue for most operations, as they
can manipulate the list in constant time.

The only exception is the operation to delete an endpoint.
Deletion must iterate over and dequeue a potentially large
number of threads. There is an obvious preemption point in
this operation: after each thread is dequeued. This intermedi-
ate step is fortunately consistent with all existing invariants,
even if the thread performing the deletion operation is it-
self deleted. Forward progress is ensured by deactivating the
endpoint at the beginning of delete operations, so threads
(including those just dequeued) cannot attempt another IPC
operation on the same endpoint.

The preemption point here is obvious because it is a direct
result of the incremental consistency design pattern in seL4.
As a result, the impact of these changes on the proof are
minimal.

3.4 Aborting Badged IPC Operations
A related real-time challenge in seL4 is the aborting of
badged IPC operations. Badges are unforgeable tokens (rep-
resented as an integer) that server processes may assign to
clients. When a client sends a message to the server using
a badge, the server can be assured of the authenticity of
the client. A server may revoke a specific badge, so that it
can ensure that no existing clients have access to that badge.
Once revoked, the server may re-issue the badge to a differ-
ent client, preserving guarantees of authenticity.

In order to revoke a badge, seL4 must first prevent any
thread from starting a new IPC operation using the badge,
and second ensure that any pending IPC operations using
the badge are aborted. It is this second operation which
requires a compromise between execution time, memory
consumption and ease of verification. The choice of data
structure used to store the set of pending IPC operations

(clients and their badges) has a significant impact on all three
factors.

For example, a balanced binary-tree structure has very
good worst-case and average-case execution time, but re-
quires more work on the verification effort; the invariants
involved in self-balancing binary tree structures are more
tedious than linear data structures. A hash-table-based data
structure may be easier to verify, and has good average-case
performance, but raises challenging memory allocation is-
sues in seL4, where memory allocation is handled outside
the kernel. It also does not improve worst-case execution
time, as a determined adversary could potentially force hash
collisions.

Instead, seL4 uses a simple linked list containing the list
of waiting threads and their associated badges, as described
in Section 3.3. Enqueuing and dequeuing threads are simple
O(1) operations. In order to remove all entries with a specific
badge, seL4 must iterate over the list; this is a potentially
unbounded operation, and so we require a preemption point.
Unlike the simple deletion case where we simply restart
from the beginning of the list, here we additionally need to
store four pieces of information:

1. at what point within the list the operation was preempted,
so that we can avoid repeating work and ensure forward
progress;

2. a pointer to the last item in the list when the operation
commenced, so that new waiting clients do not affect the
execution time of the original operation;

3. the badge which is currently being removed from the list,
so that if a badge removal operation is preempted and
a second operation is started, the first operation can be
completed before starting the new one;

4. a pointer to the thread that was performing the badge
removal operation when preempted, so that if another
thread needs to continue its operation, it can indicate to
the original thread that its operation has been completed.

With all this information, we are able to achieve our goal
of incremental consistency. The above information is asso-
ciated with the endpoint object rather than the preempted
thread (as would be done in a continuation). In doing so, we
can reason simply about the state of objects in our invariants,
rather than the state of any preempted thread.

Note that although the preemption point bounds interrupt
latency, this approach gives a longer than desirable execution
time for the badged abort operation, as every waiting thread
must be iterated over, rather than only threads waiting for a
specific badge. This has not yet been an issue in real systems,
however, should it cause problems then we may replace it
with an alternative such as a self-balancing binary tree data
structure and undertake the extra verification effort required.

3.5 Object Creation
When objects, such as threads, page tables or memory
frames, are created on behalf of the user, their contents must

327

be cleared and/or initialised in order to avoid information
leakage. Clearing an object may be a long-running opera-
tion, as some kernel objects are megabytes in size (e.g. large
memory frames on ARM can be up to 16 MiB; capability
tables for managing authority can be of arbitrary size).

The code to clear an object was previously deep inside the
object creation path, and replicated for each type of object.
Additionally, the code updated some of the kernel’s state
before objects were cleared, and the rest of the kernel’s state
after objects were cleared. Adding a preemption point in the
middle of clearing an object would therefore leave the kernel
in an inconsistent state.

To make clearing of objects preemptible, seL4 required
significant restructuring of the object creation paths. We
chose to clear out the contents of all objects prior to any other
kernel state being modified. The progress of this clearing
is stored within the object itself. As clearing is the only
long-running aspect of these operations, the remainder of the
creation code that manipulates the state of the kernel (e.g.
updating the kernel’s book-keeping data structures) can be
performed in one short, atomic pass.

Page directories (top-level page tables) however pose an
added complication. The kernel reserves the top 256 MiB
of virtual address space for itself, and is mapped into all
address spaces. When a new page directory is created, the
kernel mappings for this region must be copied in. This copy
operation is embedded deep within the creation path of page
directories. There is also an seL4 invariant specifying that
all page directories will contain these global mappings – an
invariant that must be maintained upon exiting the kernel.

Preempting the global-mapping copy poses significant
(though not insurmountable) challenges for verification. For-
tunately, on the ARMv6 and ARMv7 architectures, only
1 KiB of the page table needs to be updated. We measured
the time taken to copy 1 KiB of memory on our target plat-
form (described in Section 5.1) to be around 20µs. We de-
cided that 20µs would be a tolerable latency (for now), as
there were other long-latency issues to tackle first. There-
fore we made all other block copy and clearing operations
in seL4 preempt at multiples of 1 KiB, as smaller multiples
would not improve the worst-case interrupt latency until the
global-mapping copy is made preemptible.

3.6 Address Space Management
In a virtual address space, physical memory frames are
mapped into page tables or page directories, creating a map-
ping from virtual address to physical address. In order to
support operations on individual frames, seL4 must addi-
tionally maintain the inverse information: which address
space(s) a frame has been mapped into, and at which ad-
dress.

In seL4, all objects are represented by one or more capa-
bilities, or caps, which encapsulate metadata about the ob-
ject such as access rights and mapping information. Capa-
bilities form the basic unit of object management and access

ASID lookup table

Page table

Frame cap Frame

Page directory

Figure 4. Virtual address spaces managed using ASIDs.
Each arrow denotes a reference stored in one object to an-
other.

control in seL4 systems, and a typical system may have tens
or hundreds of thousands of caps. As such, the design of
seL4 endeavours to keep caps small to minimise memory
overhead. seL4 caps are 16 bytes in size: 8 bytes are used
for pointers to maintain their position in a “derivation tree”,
and the other 8 bytes are used for object-specific purposes.

8 bytes of extra information suffices for almost all ob-
jects, however caps to physical memory frames are an ex-
ception. To support seL4’s object deletion model, frames are
required to store their physical address, the virtual address
at which they are mapped, and the address space into which
they are mapped. This, along with some extra bits of meta-
data, exceeds the 8-byte limit inside a cap.

In order to squeeze this information into 8 bytes, the
original seL4 design uses a lookup table to map from an
18-bit index to an actual address space. The index is called
an address space identifier, or ASID, and is small enough
to be stored inside a frame cap. The lookup table is stored
as a sparse 2-level data structure in order to minimise space
usage, with each second level (ASID pool) providing entries
for 1024 address spaces. The objects and references required
for using ASIDs are shown in Figure 4.

Using ASIDs offered the additional benefit of enabling
dangling references to safely exist. If frame caps were to
store a reference to the address space itself, then when the
address space is deleted, all frame caps referring to it would
need to be updated to purge this reference. By instead in-
directing through the ASID table, the references from each
frame cap, whilst stale, are harmless. Any time the ASID
stored in a frame cap is used, it can be simply checked that
the mapping in the address space (if any still exist) agrees
with the frame cap. As a result, deleting an address space
in this design simply involves: (a) removing one entry from
the ASID lookup table, and (b) invalidating any TLB entries
from the address space.

However, the use of ASIDs poses issues for interrupt la-
tency in other areas, such as locating a free ASID to allocate
and deleting an ASID pool. Locating a free ASID is diffi-
cult to make preemptible – in the common case, a free ASID
would be found immediately, but a pathological case may re-

328

Shadow page directory

Page table Shadow page table

FrameFrame cap

Page directory

Figure 5. Virtual address spaces managed using shadow
page tables. As in Figure 4, each arrow denotes a reference
stored in one object to another. The dotted line shows an
implicit link by virtue of the shadow being adjacent to the
page table itself.

quire searching over 1024 possible ASIDs. Similarly, delet-
ing an ASID pool requires iterating over up to 1024 address
spaces. Whilst we could play with the size of these pools
to minimise latency, the allocation and deallocation routines
are inherently difficult to preempt, and so we decided to seek
an alternative to ASIDs.

By removing ASIDs, we needed some other method to
prevent dangling references within frame caps. In particular,
we needed to store a back-pointer from a virtual address
mapping to the frame cap used for the mapping. We chose to
store these pointers in a shadow page table, mapping from
virtual address to frame cap (as opposed to mapping to the
frame itself). This effectively doubles the amount of space
required for each page table and page directory. We store
this data adjacent to the page table in order to facilitate fast
lookup from a given page table entry, as shown in Figure 5.
Now, all mapping and unmapping operations, along with
address space deletion must eagerly update all back-pointers
to avoid any dangling references.

This design removes the ability to perform lazy deletion
of address spaces, but resolves many of the latency issues
surrounding the management of ASID pools. We needed
to insert preemption points in the code to delete address
spaces, however this is trivial to do and can be done without
violating any invariants on the kernel’s state. The natural
preemption point in the deletion path is to preempt after
unmapping each entry in a page table or page directory. To
avoid repeating unnecessary work, we also store the index of
the lowest mapped entry in the page table and only resume
the operation from that point.

We observe that this preemption point is again a direct
result of the shadow page table design adhering to the incre-
mental consistency design pattern.

Memory Overhead of Shadow Page Tables The space
overhead of shadow page tables might be considered detri-

mental on some systems. We can compare it to an alter-
native solution, where we utilise a frame table to maintain
bookkeeping information about every physical page on the
system. This is the approach used by many other operating
systems, including Linux.

The frame table incurs a fixed memory overhead and re-
moves the need for shadows. In its simplest form, without
support for sharing pages between address spaces (which
the shadow page table solution does support), a frame table
would require a single pointer to track each frame cap cre-
ated. On a 32-bit system with 256 MiB of physical memory
and 4 KiB frames, the frame table would occupy 256 KiB of
memory. On ARMv6 platforms, page directories are 16 KiB
and page tables are 1 KiB. A densely-packed page directory
covering 256 MiB of virtual address space would use an ex-
tra 256 KiB in shadow page tables, and an extra 16 KiB per
address space in page directories.

The shadow page table approach is not significantly less
space efficient than using a frame table, except when the sys-
tem uses sparsely-populated page tables. However, this in-
curs memory overhead already as the page tables themselves
are underutilised, as well as the shadows.

4. Cache Pinning
In order to achieve faster interrupt delivery and tighter
bounds on the worst-case execution time (WCET) of seL4,
we modified seL4 to pin specific cache lines into the L1
caches so that these cache lines would not be evicted. We
selected the interrupt delivery path, along with some com-
monly accessed memory regions to be permanently pinned
into the instruction and data caches. The specific lines to
pin were chosen based on execution traces of both a typical
interrupt delivery, and some worst-case interrupt delivery
paths.

As the cache on our target platform (described in Sec-
tion 5.1) supports locking one or more complete cache ways,
we can choose to lock 1/4, 1/2 or 3/4 of the contents of the
cache. We selected as much as would fit into 1/4 of the cache,
without resorting to code placement optimisations. A total of
118 instruction cache lines were pinned, along with the first
256 bytes of stack memory and some key data regions.

The benefit of cache pinning on worst-case execution
time is shown in Table 1. On the interrupt path, where the
pinned cache lines have the greatest benefit, the worst-case
execution time is almost halved. On other paths, the gain is
less significant but still beneficial.

Of course, these benefits do not come for free; as a portion
of the cache has been partitioned for specific code paths, the
remainder of the system has less cache for general usage. A
system with hard real-time requirements would also need to
ensure that all code and data used for deadline-critical tasks
are pinned into the cache. Methods to optimally select cache
lines to pin for periodic hard real-time task sets have been the
subject of previous research [Campoy 2001, Puaut 2002].

329

Without With
Event handler pinning pinning % gain

System call 421.6µs 378.0µs 10%
Undefined instruction 70.4µs 48.8µs 30%
Page fault 69.0µs 50.1µs 27%
Interrupt 36.2µs 19.5µs 46%

Table 1. Improvement in computed worst-case latency by
pinning frequently used cache lines into the L1 cache.

Our platform has a 128 KiB unified L2 cache with a hit
access latency of 26 cycles (compared with external memory
latency of 96 cycles). Our compiled seL4 binary is 36 KiB,
and so it would be possible to lock the entire seL4 micro-
kernel into the L2 cache. Doing so would drastically reduce
execution time even further, but we have not yet adapted our
analysis tools to support this.

5. Analysis Method
After making the changes outlined above, we analysed seL4
to compute a new safe upper bound on its interrupt latency.
The analysis was performed on a compiled binary of the ker-
nel and finds the longest paths through the microkernel using
a model of the hardware. We also evaluate the overestima-
tion of the analysis by executing the longest paths on real
hardware.

5.1 Evaluation Platform
seL4 can run on a variety of ARM-based CPUs, includ-
ing processors such as the ARM Cortex-A8 which can be
clocked at over 1 GHz. However, we were unable to obtain
a recent ARM processor (e.g. using the ARMv7 architec-
ture) which also supported cache pinning. In order to gain
the benefits of cache pinning, we ran our experiments on a
somewhat older processor, the Freescale i.MX31, on a KZM
evaluation board. The i.MX31 contains an ARM1136 CPU
core with an 8-stage pipeline and is clocked at 532 MHz.

The CPU has split L1 instruction and data caches, each
16 KiB in size and 4-way set-associative. These caches sup-
port either round-robin or pseudo-random replacement poli-
cies. The caches also provide the ability to select a subset
of the four ways for cache replacement, effectively allowing
some cache lines to be permanently pinned. Alternately, the
caches may also be used as tightly-coupled memory (TCM),
providing a region of memory which is guaranteed to acces-
sible in a single cycle.

As our analysis tools do not yet support round-robin re-
placement (and pseudo-random is not feasible to analyse),
we analysed the caches as if they were a direct-mapped
cache of the size of one way (4 KiB). This is a pessimistic but
sound approximation of the cache’s behaviour, as the most
recently accessed cache line in any cache set is guaranteed
to reside in the cache when next accessed.

The i.MX31 also provides a unified 128 KiB L2 cache
which is 8-way set-associative. The KZM board provides
128 MiB of RAM with an access latency of 60 cycles when
the L2 cache is disabled, or 96 cycles when the L2 cache is
enabled. Due to this significant disparity in memory latency,
we analysed the kernel both with the L2 cache enabled and
with it disabled.

We disabled the branch predictors of the ARM1136 CPU
both on hardware used for measurements and in the static
analysis itself, as our analysis tools do not yet model them.
Interestingly, using the branch predictor increases the worst-
case latency of a branch: with branch predictors enabled,
branches on the ARM1136 vary between 0 and 7 cycles,
depending on the type of branch and whether or not it is
predicted correctly. With the branch predictor disabled, all
branches execute in a constant 5 cycles.

The effect of disabling these features on execution time is
quantified in Section 6.4.

5.2 Static Analysis for Worst-Case Execution Time
Our analysis to compute the interrupt response time of seL4
is based upon our previous work [Blackham 2011a], to
which we refer the reader for more background on the tools
used. This section summarises the analysis method and high-
lights improvements over the previous analysis technique.

We use Chronos 4.2 [Li 2007] to compute the worst-
case execution time of seL4 and evaluate our improvements
to seL4. We had previously modified Chronos to anal-
yse binaries on the ARMv7 architecture using a model of
the Cortex-A8 pipeline. For this analysis we adapted the
pipeline model to support the ARM1136 CPU on our tar-
get hardware. ARM’s documentation of the ARM1136 de-
scribes the performance characteristics of the pipeline in
detail [ARM 2005].

To analyse the interrupt response time of seL4, we com-
puted upper bounds on the worst-case execution time of all
paths through seL4 where interrupts cannot be immediately
serviced. These paths begin at one of the kernel’s exception
vectors: system calls, page faults, undefined instructions or
interrupts. A path through the kernel ends when either (a)
control is passed back to user and interrupts are re-enabled;
or (b) at the start of the kernel’s interrupt handler (a pre-
empted kernel operation will return up the call stack and then
call the kernel’s interrupt handler).

After extracting the control flow graph of the kernel,
loops and loop nests are automatically identified. We anno-
tate the control flow graph with the upper bound on the num-
ber of iterations of all loops. In this analysis, some of these
upper bounds are computed automatically (described further
in Section 5.3).

The analysis virtually inlines all functions so that function
calls in the control flow graph are transformed into simple
branches. This enables the static analysis to be aware of the
calling context of a function that is called from multiple call
sites; the processor’s cache will often be in wildly different

330

states depending on the execution history. Unfortunately,
this virtual inlining also leads to significant overestimation
as described in Section 6.

As Chronos is based on the implicit path enumeration
technique (IPET) [Li 1995], the output of Chronos is an
integer linear programming (ILP) problem: a set of integer
linear equations that represent constraints, and an objective
function to be maximised subject to the constraints. The
solution to the ILP problem is the worst-case execution time,
and is obtained using an off-the-shelf ILP solver.

Additional constraints can be added manually in order to
exclude certain infeasible paths. As the analysis only consid-
ers the control flow graph, it has no insight into the values of
variables in the kernel. Therefore, it may consider paths that
are not actually realisable. In order to exclude these paths,
we manually added extra constraints to the ILP problem
where necessary. These constraints take one of three forms:

• a conflicts with b in f : specifies that the basic blocks
at addresses a and b are mutually exclusive, and will not
both execute during an invocation of the function f . If f
is invoked multiple times, a and b can each be executed
under different invocations.

• a is consistent with b in f : specifies that the basic blocks
at addresses a and b will execute the same number of
times during an invocation of the function f .

• a executes n times: specifies that the basic block at
address a will only ever execute at most n times in total
in all possible contexts.

It would be possible to transform these extra constraints
into proof obligations – statements which a verification en-
gineer could be asked to prove formally. This would remove
the possibility of human error mistakenly excluding a path
which is in fact feasible, resulting in an unsound analysis.

5.3 Computing Loop Bounds
As described in the previous section, our analysis currently
requires annotations to specify the iteration counts of each
loop in seL4. Many of these annotations can be generated au-
tomatically. For example, loops which use explicit counter
variables can be easily bounded using static analysis. We
have computed the loop bounds automatically for several of
the loops in seL4 using program slicing and model check-
ing, thereby reducing the possibility of human error. Our
approach shares similarities to previous model-checking
techniques to find loop bounds [Rieder 2008] or compute
WCET [Metzner 2004]. It operates on unmodified binaries,
and is unaffected by compiler optimisations.

First, we obtain the semantics of each individual program
instruction using an existing formalisation of the ARMv7
instruction set [Fox 2010]. We transform the program into
SSA form [Cytron 1991], and then compute a program
slice [Weiser 1984] to identify a subset of instructions which
encapsulates the behaviour of the loop. This slice captures
the control flow dependencies of the loop, and expresses the

semantics of the data flow through the loop. This informa-
tion is converted into a model in linear temporal logic (LTL).
A model checker is used to solve for the maximum execu-
tion count of the loop head by using a binary search over the
loop count.

Not all loops in seL4 have been analysed successfully yet
– due to the lack of pointer analysis support in our tools,
we presently are unable to compute the bounds of loops
which store and load critical values to and from memory.
However, almost all of these accesses are to and from the
stack, which in the absence of pointer aliasing (guaranteed
by seL4’s invariants), can be computed and tracked offline.
With some work, we expect that this technique will be able
to compute all of the remaining loop bounds in seL4.

There are other types of loops which are difficult to bound
– e.g., loops which traverse linked lists. In seL4, linked lists
do exist which are bounded only by the size of physical
memory. However, all traversals of these lists contain pre-
emption points after a fixed number of iterations. Therefore,
for interrupt response time analysis, we can simply consider
the fixed number of iterations as the upper bound.

5.4 Comparing Analysis with Measurements
The results of our static analysis give an upper bound on the
worst-case execution time of kernel operations. However,
this upper bound is a pessimistic estimate. In practice, we
may never observe latencies near the upper bound for several
reasons:

• The conservative nature of our pipeline and cache models
means we consider potential worst-case processor states
which are impossible to achieve.

• Of the worst-case processor states which are feasible, it
may be extremely difficult to manipulate the processor
into such a state.

• The worst-case paths found by the analysis may be ex-
tremely difficult (but not impossible) to exercise in prac-
tice.

In order to gain some insight into how close our upper
bounds are, we can try to approximate the worst-case as
best we can. We wrote test programs to exercise the longest
paths we could find ourselves (guided by the results of the
analysis) and ran these on the hardware. Our test programs
pollute both the instruction and data caches with dirty cache
lines prior to exercising the paths, in order to maximise
execution time. We measured the execution time of these
paths using the cycle counters available on the ARM1136’s
performance monitoring unit.

In order to quantify the amount of pessimism introduced
by the first two factors alone, we used our static analysis
model to compute the execution time of paths that we are
able to reproduce, and compared them with real hardware.
The results of this are shown in Section 6.2.

331

Event handler Before changes; L2 disabled After changes; L2 disabled After changes; L2 enabled
Computed Computed Observed Ratio Computed Observed Ratio

System call 3851µs 332.4µs 101.9µs 3.26 436.3µs 80.5µs 5.42
Undefined instruction 394.5µs 44.4µs 42.6µs 1.04 76.8µs 43.1µs 1.78
Page fault 396.1µs 44.9µs 42.9µs 1.05 77.5µs 41.1µs 1.89
Interrupt 143.1µs 23.2µs 17.7µs 1.31 44.8µs 14.3µs 3.13

Table 2. WCET for each kernel entry-point in seL4, before and after our changes to reduce WCET. Computed results are a
safe upper bound on execution time. Observed results are our best-effort attempt at recreating worst-cases on hardware.

6. Results
We first computed the worst-case execution time of our
modified seL4 kernel binary using only the loop iteration
counts and no other human input. This provided us with an
upper bound on the execution time of the kernel of over
600,000 cycles. We converted the solution to a concrete
execution trace. However, from looking at these traces it was
quickly apparent that the solution was in fact infeasible as
the path it took was meaningless – no input could possibly
result in execution of the path.

We then added additional constraints of the form de-
scribed in Section 5.2, in order to eliminate paths that were
obviously infeasible. Each of these constraints was derived
by observing why a given trace could not be executed. The
biggest cause of these infeasible paths was due to the style of
coding in seL4, which stems from its functional roots. Many
functions in seL4 contain switch statements that select code
based on the type of cap passed in, as shown in Figure 6. If
f() and g() both use this style then, due to virtual inlining,
much of the inlined copy of g() will never be executed, as
the return value of getCapType() is guaranteed to be the
same in both functions.

Our analysis detects the WCET of g(), which only oc-
curs for one specific cap type, as contributing to every in-
vocation of g() from f(). This leads to significant over-
estimation of the WCET. Based on this, we added several
constraints of the form a is consistent with b, where a and b
were the blocks corresponding to the same types in f() and
g().

We added additional constraints until we obtained a path
that appeared to be feasible. This path has an execution time
estimate of 232,098 cycles with the L2 cache enabled, or
176,851 cycles with the L2 cache disabled. On the 532 MHz
i.MX31, this corresponds to an execution time of 436.3µs
with L2 and 332.4µs without L2.

The full results of the analysis are shown in Table 2. The
first column shows the WCET before we modified seL4 as
outlined in this paper, making the results comparable to our
previous analysis [Blackham 2011a] (the previous analysis
was on the OMAP3 platform and thus is not directly com-
parable). For the system call path, a factor of 11.6 improve-
ment in WCET was observed, largely due to the added pre-
emption points. The other kernel entry points also see a sig-
nificant improvement because the scheduler bitmaps and the

void f(cap_t cap) {
...
switch (getCapType(cap)) {

case frame_cap:
...
g(cap);
...
break;

case page_table_cap:
...
g(cap);
...
break;

...

Figure 6. Example of the coding style used in many seL4
functions. This arises from the use of pattern matching over
type constructors in its Haskell specification.

new address-space management techniques remove two po-
tentially long-running loops.

The worst-case interrupt latency of seL4 is the sum of the
WCET for the system call path (the longest of all kernel op-
erations), and the interrupt path. This gives an upper bound
on the interrupt latency of 481µs with L2 and 356µs with-
out.

For all entry points except the system call handler, we
were able to construct scenarios that produced execution
times that were within 31% of the computed upper bound
when the L2 cache was disabled. Enabling the L2 cache
increases the amount of pessimism in our upper bounds,
and thus the disparity is much higher (e.g. 3.13 for the
interrupt path). Recreating the path identified by the system
call handler proved to be extremely complicated and our best
efforts only achieved a case that was within 5.4 times of our
computed upper bound.

6.1 Analysis
The worst-case we detected was a system call performing an
atomic two-way (send-receive) IPC operation, using all the
features seL4 provides for its IPC, including a full-length
message transfer, and granting access rights to objects over
IPC. The largest contributing factor to the run-time of this
case was address decoding for caps. Recall that caps are

332

Object B

0 1

0 1

0 1

0 1

0 1

0 1

Object A

Figure 7. A worst-case address decoding scenario uses a
capability space that requires a separate lookup for each
bit of an address. Here, a binary address 010...0 would
decode to object A, but may need to traverse up to 32 levels
of this structure to do so.

essentially pointers to kernel objects with some associated
metadata. In seL4, caps have addresses that exist in a 32-
bit capability space; decoding an address to a kernel object
may require traversing up to 32 edges of a directed graph,
as shown in Figure 7. In a worst-case IPC, this decoding
may need to be performed up to 11 times, each in different
capability spaces, leading to a huge number of cache misses.
Note that most seL4-based systems would be designed to
require at most one or two levels of decoding; it would be
highly unusual to encounter anything close to this worst-
case capability space on a real system, unless crafted by an
adversary.

This worst case demonstrates that our work has been suc-
cessful in minimising the interrupt latency of the longer run-
ning kernel operations, such as object creation and deletion.
In previous analyses of seL4, a distinction was made be-
tween open and closed systems, where closed systems per-
mitted only specific IPC operations to avoid long interrupt
latencies, and open systems permitted any untrusted code to
execute. Our work now eliminates the need for this distinc-
tion, as the latencies for the open-system scenarios are no
more than that of the closed system.

The atomic send-receive operation exists in seL4 primar-
ily as an optimisation to avoid entering the kernel twice for
this common scenario – user-level servers in an event loop
will frequently respond to one request and then wait to re-
ceive the next. If necessary, the execution time of this oper-
ation could be almost halved either by inserting a preemp-
tion point between the send and receive phases, or by simply
forcing the user to invoke the send and receive phases sepa-
rately. This latter approach would be detrimental to average-

case throughput. It would be worthwhile to investigate in-
serting a preemption point here to reduce worst-case latency
even further.

Other entry points to the kernel show no unexpected
pathological cases; these entry points are largely determin-
istic and have little branching. Like the IPC operations, the
worst case for these require decoding a capability that exists
32 levels deep in the capability space. However only one
such capability needs to be decoded in the other exception
handlers (to the thread which will handle the exception).

The improvements outlined in this paper do not sig-
nificantly affect the best- or average-case execution time.
This is because IPCs are the most frequent operations in
microkernel-based systems. seL4 already provides fastpaths
to improve the performance of common IPC operations by
an order of magnitude – fastpaths are highly-optimised code
paths designed to execute a specific operation as quickly as
possible. The fastpath performance is not affected by our
preemption points. In fact, the IPC fastpath is one of the
fastest operations the kernel performs (around 200-250 cy-
cles on the ARM1136) and hence there would be no benefit
to making it preemptible.

6.2 Conservatism of Hardware Model
Our hardware model is conservative to guarantee a safe
bound on execution time. In order to determine the amount
of pessimism this adds to our upper bounds, we computed
the execution time of the specific paths we tested in our
analysis. We achieved this by adding extra constraints to the
ILP problem to force analysis of the desired path. The results
are shown in Figure 8. The observed execution times were
obtained by taking the maximum of 100,000 executions of
each path.

The disparity between the computed and observed time is
attributable to both conservatism in our pipeline and cache
models of the processor, and the difficultly in forcing a
worst-case processor state. Our model of the CPU’s caches
is very conservative – the hardware’s L1 caches are 4-way
set-associative and the L2 cache is 8-way set-associative, but
because we have not modelled the replacement policy of the
caches, we are forced to treat any contention for cache lines
within a cache set as a miss. Thus accesses which might not
miss the cache on hardware must be assumed to miss in our
model unless it was the most recently-used cache line within
the cache set.

As the system call path is much longer than the other
three paths (by an order of magnitude), there is much more
contention within each cache set. Therefore it suffers the
most from this conservative model.

6.3 Computation Time
The entire static analysis ran in 65 minutes on an AMD
Opteron (Barcelona) system running at 2.1 GHz. We re-
peated all analysis steps for each entry point – system calls,
undefined instructions, page faults and interrupts. The analy-

333

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

System
call

Undefined
Inst.

Page
fault

Interrupt

%
 o

v
e

re
s
ti
m

a
ti
o

n

L2 cache enabled
L2 cache disabled

Figure 8. Overestimation of our hardware model for static
analysis with the L2 cache enabled and disabled. Each bar
corresponds to a realisable path and shows the percentage
difference between the observed execution time on hardware
and the predicted execution time for the same path.

sis of the latter three entry points completed within seconds,
whilst the analysis of the system call entry point took sig-
nificantly longer. This is to be expected, as the system call
handler is the entry point for the majority of seL4’s code.

For the system call handler, the most computationally-
intensive step of the analysis was running Chronos, taking
61 minutes. Over half the execution time of Chronos was
spent in the address and cache analysis phases – these phases
compute worst-case cache hit/miss scenarios for each data
load, store and instruction fetch.

We went through numerous iterations of adding addi-
tional constraints to the ILP problem in order to exclude in-
feasible paths, with each iteration taking around an hour to
execute. Future work will investigate how to automate the
generation of these additional constraints to arrive at a feasi-
ble solution sooner.

6.4 Impact of L2 and Branch Predictors
As mentioned in Section 5.1, we disabled the branch predic-
tors on our platform and in our model as we are presently
unable to analyse their effect. We also compare the effects
of enabling or disabling the L2 cache. Figure 9 shows the
impact of enabling these features both individually and to-
gether on actual execution time.

It is interesting to note that some of the observed times
actually increased when enabling the L2 cache, by up to
8% for the page fault path. This is because the worst case
scenarios execute with cold caches that are polluted with
data which must first be evicted. Enabling the L2 cache
increases the latency of the memory hierarchy – from 60
cycles to 96 cycles for a miss serviced by main memory –
which is particularly detrimental to cold-cache performance.
The code paths executed in seL4 are typically very short and

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

System
call

Undefined
Inst.

Page
fault

Interrupt

N
o

rm
a

lis
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Baseline
L2 enabled

B-pred enabled
L2+B-pred enabled

Figure 9. Effects of enabling L2 cache and/or branch pre-
diction on worst-case observed execution times. Each path
is normalised to the baseline execution time (L2 and branch
predictors disabled).

non-repetitive, thereby gaining little added benefit from the
L2 cache that is not already provided by the L1 caches.

Enabling the branch predictor gave a minor improvement
in all test cases. The benefit is minimal again because of the
cold-cache nature of these benchmarks; the benefit of the
branch predictor barely makes up for the added costs of the
initial mispredictions.

Despite these results, the L2 cache and branch predictors
greatly improve performance in the average case. Reduced
run-time translates directly to increased battery life for hand-
held devices such as mobile phones, and so the slightly
detrimental effect on interrupt latency is almost certainly
worthwhile on such devices.

As noted earlier, it would be possible to lock the entire
seL4 microkernel into the L2 cache. This would result in
a huge benefit to worst-case interrupt latency of the kernel
whilst also reducing non-determinism, resulting in a tighter
upper bound.

7. Related work
Ford et al. explore the differences between process-based
and event-based kernels, and present the Fluke kernel, which
utilises restartable system calls rather than continuations to
implement an atomic kernel API [Ford 1999]. They outline
the advantages of this model, including ease of userspace
checkpointing, process migration and aided reliability. They
also measured the overhead of restarting kernel operations
to be at most 8% of the cost of the operations themselves.

Several subprojects of Verisoft have attempted to for-
mally verify all or part of different OS kernels. They have
verified a very small and simple time-triggered RTOS called
OLOS [Daum 2009b], as well as parts of their VAMOS mi-
crokernel [Daum 2009a]. These kernels are also based on
the event-driven single-kernel-stack model. They are much

334

simpler kernels than seL4 (e.g. VAMOS supports only single-
level page tables) and are designed for the formally-verified
VAMP processor [Beyer 2006]. Whilst the VAMP processor
is a real-world product, it is not widely used.

A related project began to verify the PikeOS RTOS with
some progress but the proof has not been completed [Bau-
mann 2010]. PikeOS is a commercial product used in safety-
critical real-time systems such as aircraft and medical de-
vices, but there has been no indication of a sound worst-case
interrupt latency analysis.

Some progress has been made towards verifying code
that executes in the presence of interrupts. Feng et al. have
constructed a framework on which to reason about OS code
in the presence of interrupts and preemption [Feng 2008].
Gotsman and Yang have also constructed frameworks for
verifying preemptible and multiprocessor kernels, and have
used theirs to verify an OS scheduler [Gotsman 2011].

We refer the reader to Klein’s thorough overview of
the state of formal verification of operating systems [Klein
2009a].

Our previous analyses of seL4’s response time were per-
formed on older versions of the seL4 kernel and targeted an
800 MHz OMAP3 CPU [Blackham 2011a;b]. In this work,
we chose a different platform, the i.MX31, in order to bene-
fit from better cache management. The OMAP3 differs from
the i.MX31 in CPU speed, micro-architecture and mem-
ory latency. We have repeated our previous analysis on the
i.MX31 platform to obtain directly comparable results. The
work presented here gives a further factor of 11.6 improve-
ment over our previous analysis when the L2 cache is dis-
abled, and explores the verification implications of adding
preemption points to reduce interrupt latency.

8. Conclusions and Future Work
We have explored how to reduce the worst-case interrupt re-
sponse time of a verified protected microkernel such as seL4.
We have added preemption points into some of seL4’s oper-
ations, and have restructured others in order to remove all
non-preemptible long-running operations from the kernel.
These improvements have been guided by an analysis of the
kernel’s worst-case execution time.

From its inception, the design of seL4 was intended to
limit interrupt latency to short bounded operations, although
this was not true of the original implementation. Using static
analysis to compute interrupt latencies, we could systemati-
cally validate and improve the design where necessary.

As a verified microkernel, seL4 imposes additional con-
straints on how preemption may be introduced. We must take
care when adding preemption points to ensure that the effort
of re-verifying the kernel is minimised. This effort can be
reduced by avoiding unnecessary violations of global ker-
nel invariants, and searching for intermediate states that are
generally consistent with the kernel’s normal execution.

With careful placement of preemption points, we have
eliminated large interrupt latencies caused by longer running
operations inside seL4. This enables seL4 to host execution
of untrusted code, confined by the capabilities given to it,
and still safely meet real-time deadlines within 189,117 cy-
cles. On modern embedded hardware this translates to a few
hundred microseconds, which is ample for many real-time
applications.

There is scope to reduce this even further, which will be
the subject of future work. We will also focus on automat-
ing the analysis to reduce the level of human intervention
required. Of course, we will also have the work ahead of us
to verify our improvements to seL4.

We believe an event-based kernel such as seL4 could
realistically attain a worst-case interrupt latency of 50,000
cycles (or approximately 100µs on a 500 MHz CPU). Due
to its small code size, L2 cache pinning can be very effective
at reducing latency for instruction cache misses. Another
potential improvement is to remove, or make preemptible,
seL4’s atomic send-receive IPC operation.

The biggest issue with seL4’s design in terms of interrupt
latency, is the decision to use a versatile 32-bit capability ad-
dressing scheme – each of the 32 bits that need to be decoded
can theoretically lead to another cache miss, and decoding
several such addresses results in significant interrupt laten-
cies. Practical systems can use the seL4 authority model to
prevent this scenario by not allowing an adversary the ability
to construct their own capability space.

We have shown that the event-based model of seL4 does
not lead to unreasonably large interrupt latencies. It also
brings the benefits of reduced kernel complexity. We assert
that a process-based kernel without preemption would at-
tain interrupt latencies in the same order of magnitude as
the event-based model. A fully-preemptible process-based
kernel might attain much smaller latencies, but forgoes the
possibility of formal verification.

Verification technology may some day be able to rea-
son about the correctness of fully-preemptible kernels. Un-
til then, a formally-verifiable event-based microkernel such
as seL4 provides a very high assurance platform on which
safety-critical and real-time systems can be confidently built.

Acknowledgements
Many members of the seL4 team helped to develop the ideas
presented in this paper, including Kevin Elphinstone (lead
architect), Adrian Danis, Dhammika Elkaduwe, Ben Leslie,
Thomas Sewell and Gerwin Klein.

We thank our shepherd, Wolfgang Schröder-Preikschat,
for his guidance and valuable feedback, and our anonymous
reviewers for their helpful comments.

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

335

References
[ARM 2005] ARM1136JF-S and ARM1136J-S Technical Reference

Manual. ARM Ltd., R1P1 edition, 2005.

[Baker 1991] T. P. Baker. Stack-based scheduling for realtime
processes. J. Real–Time Syst., 3(1):67–99, 1991.

[Baumann 2010] Christoph Baumann, Bernhard Beckert, Holger
Blasum, and Thorsten Bormer. Ingredients of operating system
correctness. In Emb. World Conf., Nuremberg, Germany, Mar
2010.

[Beyer 2006] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk
Leinenbach, and Wolfgang J. Paul. Putting it all together—
formal verification of the VAMP. International Journal on
Software Tools for Technology Transfer (STTT), 8(4):411–430,
2006.

[Blackham 2011a] Bernard Blackham, Yao Shi, Sudipta Chat-
topadhyay, Abhik Roychoudhury, and Gernot Heiser. Timing
analysis of a protected operating system kernel. In 32nd RTSS,
Vienna, Austria, Nov 2011.

[Blackham 2011b] Bernard Blackham, Yao Shi, and Gernot Heiser.
Protected hard real-time: The next frontier. In 2nd APSys, pages
1:1–1:5, Shanghai, China, Jul 2011.

[Campoy 2001] M. Campoy, A.P. Ivars, and J.V.B. Mataix. Static
use of locking caches in multitask preemptive real-time sys-
tems. In Proceedings of IEEE/IEE Real-Time Embedded Sys-
tems Workshop, 2001. Satellite of the IEEE Real-Time Systems
Symposium.

[Cytron 1991] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently comput-
ing static single assignment form and the control dependence
graph. ACM Trans. Progr. Lang. & Syst., 13:451–490, October
1991.

[Daum 2009a] Matthias Daum, Jan Dörrenbächer, and Burkhart
Wolff. Proving fairness and implementation correctness of a
microkernel scheduler. JAR: Special Issue Operat. Syst. Veri-
fication, 42(2–4):349–388, 2009.

[Daum 2009b] Matthias Daum, Norbert W. Schirmer, and Mareike
Schmidt. Implementation correctness of a real-time operating
system. In IEEE Int. Conf. Softw. Engin. & Formal Methods,
pages 23–32, Hanoi, Vietnam, 2009. IEEE Comp. Soc.

[Dennis 1966] Jack B. Dennis and Earl C. Van Horn. Programming
semantics for multiprogrammed computations. CACM, 9:143–
155, 1966.

[Draves 1991] R.P. Draves, Brian N. Bershad, R.F. Rashid, and
R.W. Dean. Using continuations to implement thread manage-
ment and communication in operating systems. In 13th SOSP,
Asilomar, CA, USA, Oct 1991.

[Elkaduwe 2007] Dhammika Elkaduwe, Philip Derrin, and Kevin
Elphinstone. A memory allocation model for an embedded
microkernel. In 1st MIKES, pages 28–34, Sydney, Australia,
Jan 2007. NICTA.

[Feng 2008] Xingu Feng, Zhong Shao, Yuan Dong, and Yu Guo.
Certifying low-level programs with hardware interrupts and pre-
emptive threads. In PLDI, pages 170–182, Tucson, AZ, USA,
Jun 2008.

[Ford 1999] Brian Ford, Mike Hibler, Jay Lepreau, Roland Mc-
Grath, and Patrick Tullmann. Interface and execution models in
the Fluke kernel. In 3rd OSDI, pages 101–115, New Orleans,
LA, USA, Feb 1999. USENIX.

[Fox 2010] Anthony Fox and Magnus Myreen. A trustworthy
monadic formalization of the ARMv7 instruction set architec-
ture. volume 6172 of LNCS, pages 243–258, Edinburgh, UK,
Jul 2010. Springer-Verlag.

[Gotsman 2011] Alexey Gotsman and Hongseok Yang. Modular
verification of preemptive OS kernels. 16th ICFP, pages 404–
417, 2011.

[Heiser 2010] Gernot Heiser and Ben Leslie. The OKL4 Microvi-
sor: Convergence point of microkernels and hypervisors. In 1st
APSys, pages 19–24, New Delhi, India, Aug 2010.

[Hohmuth 2002] Michael Hohmuth. The Fiasco kernel: System
architecture, 2002. Technical Report TUD-FI02-06-Juli-2002.

[Klein 2009a] Gerwin Klein. Operating system verification — an
overview. Sādhanā, 34(1):27–69, Feb 2009.

[Klein 2009b] Gerwin Klein, Kevin Elphinstone, Gernot Heiser,
June Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: For-
mal verification of an OS kernel. In 22nd SOSP, pages 207–220,
Big Sky, MT, USA, Oct 2009. ACM.

[Li 2007] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roy-
choudhury. Chronos: A timing analyzer for embedded software.
In Science of Computer Programming, Special issue on Experi-
mental Software and Toolkit, volume 69(1-3), Dec 2007.

[Li 1995] Yau-Tsun Li, Sharad Malik, and Andrew Wolfe. Effi-
cient microarchitecture modeling and path analysis for real-time
software. In 16th RTSS, pages 298–307, 1995.

[Liedtke 1993] Jochen Liedtke. Improving IPC by kernel design.
In 14th SOSP, pages 175–188, Asheville, NC, USA, Dec 1993.

[Liedtke 1995] Jochen Liedtke. On µ-kernel construction. In 15th
SOSP, pages 237–250, Copper Mountain, CO, USA, Dec 1995.

[Mehnert 2002] Frank Mehnert, Michael Hohmuth, and Hermann
Härtig. Cost and benefit of separate address spaces in real-time
operating systems. In 23rd RTSS, Austin, TX, USA, 2002.

[Metzner 2004] Alexander Metzner. Why model checking can
improve WCET analysis. In Rajeev Alur and Doron Peled,
editors, Computer Aided Verification, volume 3114 of LNCS,
pages 298–301. Springer-Verlag, 2004.

[Puaut 2002] Isabelle Puaut and David Decotigny. Low-complexity
algorithms for static cache locking in multitasking hard real-time
systems. In 23rd RTSS, pages 114–123, 2002.

[Rieder 2008] B. Rieder, P. Puschner, and I. Wenzel. Using model
checking to derive loop bounds of general loops within ANSI-C
applications for measurement based WCET analysis. In Intelli-
gent Solutions in Embedded Systems, 2008 International Work-
shop on, pages 1–7, july 2008.

[Warton 2005] Matthew Warton. Single kernel stack L4. BE thesis,
School Comp. Sci. & Engin., University NSW, Sydney 2052,
Australia, Nov 2005.

[Weiser 1984] Mark Weiser. Program slicing. IEEE Trans. Softw.
Engin., SE-10(4):352–357, Jul 1984.

336

	Introduction
	Avoiding Preemption in the Kernel
	Design of seL4
	Proof Invariants of seL4

	Areas of Improvement
	Removal of Lazy Scheduling
	Scheduler Bitmaps
	Aborting IPC Operations
	Aborting Badged IPC Operations
	Object Creation
	Address Space Management

	Cache Pinning
	Analysis Method
	Evaluation Platform
	Static Analysis for Worst-Case Execution Time
	Computing Loop Bounds
	Comparing Analysis with Measurements

	Results
	Analysis
	Conservatism of Hardware Model
	Computation Time
	Impact of L2 and Branch Predictors

	Related work
	Conclusions and Future Work

