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Abstract

Hard real-time systems are typically written to execute either
on bare metal or on a small real-time executive that offers no
memory protection. This model scales poorly as systems be-
come more complex and integrated, as is the trend in industry
today. Designing hard real-time systems on a protected OS is
often avoided due to the difficulty in predicting its response
time.

Hard real-time systems with full virtual memory and mem-
ory protection have been proposed previously. However, to
our knowledge, no such system has determined safe upper
bounds on the latency introduced by this protection.

This paper proposes that hard real-time systems can be
constructed confidently and cost-effectively using an oper-
ating system providing full memory protection and virtual
memory. We contend that a carefully written microkernel
providing these mechanisms has the ability to be used in a
hard real-time system without overly pessimistic response
time guarantees. We use the seL4 microkernel as a case
study, investigating how the features of seL4’s design enable
a highly accurate WCET analysis.

1 Introduction

Traditionally, hard real-time systems are constructed on hard-
ware with predictable timing characteristics and with minimal
software “glue” between the application and the hardware it-
self. Such systems are often developed without an operating
system—on “bare metal”—or use a lightweight real-time ex-
ecutive to schedule threads. They offer no memory protec-
tion between components. The lack of fault tolerance leads
to a design that is difficult to confidently scale to complicated
systems which integrate several complex software stacks on
one processor.

Large systems often separate out critical real-time func-
tionality onto dedicated processors, such as the baseband
processor found on most smart phones. However, as man-
ufacturers strive to gain a competitive advantage by adding
features to embedded devices, the level of integration will
only increase. Using dedicated processors does not scale—
for example, cars and aircraft are trending towards combining
both critical and convenience functionality, and the cost and
weight of tens or hundreds of processors is a serious issue.

An alternative solution to satisfy this growing trend is to
consolidate these systems onto a single processor, and use an
operating system to provide isolation between critical real-
time components, and less critical time-sharing components
[MHH02]. However, for hard real-time designs, this solution
depends on the ability to provide safe upper bounds on the

interrupt latency of the OS. In most systems, the interrupt
latency is determined by the maximum worst-case execution
time (WCET) of all non-preemptible code in the kernel.

It is possible to achieve very good interrupt latencies by
making the kernel fully preemptible. In this model, inter-
rupts are permitted to occur anywhere within the kernel, ex-
cept within some small protected regions of code, usually to
modify critical data structures. This gives typical interrupt
latencies in the order of tens, or hundreds, of cycles. How-
ever, this requires very careful coding of the interrupt paths,
and defensively analysing that at every point in the kernel
an interrupt cannot cause a crash or make the kernel’s state
inconsistent. Analysing concurrency issues of this nature is
extremely challenging due to the explosion of possible inter-
leavings to consider and the difficulty in reproducing timing-
related bugs. Much research effort has been devoted to devel-
oping methods and tools to identify such cases.

Many kernels do not allow interrupts to occur whilst ex-
ecuting kernel code, or allow them only to occur at desig-
nated preemption points. This greatly simplifies the design
and testing of the kernel, at the cost of higher worst-case in-
terrupt latency. Well-placed preemption points mitigate the
issue, but still cannot achieve the small latencies of the fully
preemptible model.

As embedded processors become faster, guaranteed laten-
cies in the 100 000s of cycles become acceptable for many
applications. This, in turn, permits the integration of larger,
more complex software components into a single system,
keeping device costs lower. The challenge then for hard real-
time systems is to compute a safe upper bound of the interrupt
latency of the kernel.

Safe upper bounds for WCET are generally computed us-
ing a combination of static analysis techniques and mea-
surements on real hardware [KWRP05, PZH07]. Operating
systems kernels have long been an elusive target of static
WCET analysis, due to their unstructured code, tight cou-
pling with hardware, and sheer size. WCET bounds based
on measurements alone cannot be relied upon—for exam-
ple, measurement-based upper bounds stated for RTLinux
[YB97] were later shown to be invalid [MHSH01]. Several
kernels have been analysed using static analysis, including
RTEMS [CP01] and OSE [SEGL04, CEE+02], but these did
not support memory protection using paged virtual memory.
To our knowledge, no kernel providing full virtual memory
and memory protection has been successfully analysed for its
WCET. An analysis was attempted on the L4 Pistachio ker-
nel [SP07], but safe WCET bounds were never established.

We assert that a well-designed microkernel lends itself to
a tight WCET analysis. This paper focuses on the seL4 mi-
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crokernel and presents it as a viable solution for creating hard
real-time systems with very strong isolation properties.

1.1 seL4 as a Hard Real-time Platform
seL4 [KEH+09] is a third-generation microkernel, broadly
based on the concepts of L4 [Lie96]. It provides virtual ad-
dress spaces, threads, communication via synchronous and
asynchronous IPC, and capabilities for managing authority.
The distinguishing feature of seL4 is that it is the only ker-
nel to date with a formal machine-checked proof that the C
code implementation adheres to the specification of the ker-
nel. This additionally ensures that seL4 will never crash or
perform an unsafe operation. Whilst these strong functional
guarantees are sufficient for many systems, critical real-time
systems also require temporal guarantees to achieve safety.

seL4’s specification dictates that the kernel will never enter
an infinite loop—i.e., all seL4 system calls eventually return
to the user. Previously, this was the only temporal guaran-
tee known of seL4. In this paper, we investigate seL4’s ap-
plication to hard real-time domains and present the benefits
of analysing a formally verified kernel. A microkernel with
provably correct operation and guaranteed worst-case execu-
tion time bounds creates a foundation on which large-scale,
trustworthy, hard real-time systems can be built.

1.2 Contribution
This paper asserts that it is possible to compute realistic safe
upper bounds on interrupt latency for protected microkernel-
based systems. We demonstrate the first full WCET analysis
of a memory-protected OS kernel, seL4, with a view to tun-
ing the kernel for hard real-time applications. We perform
a full context-aware analysis of all of seL4’s code paths—
specifically, the analysis virtually inlines all functions within
seL4 so that it is context-sensitive. Such an approach is fea-
sible due to seL4’s small code size (compared with other op-
erating system kernels), at around 8 700 lines of C code. De-
spite this fact, it is, to our knowledge, still the largest code
base where a full context-aware WCET analysis has been per-
formed.

Section 2 details the features of seL4 that make it amenable
to automated analysis. Section 3 describes the methods used
to analyse seL4. Section 4 shows the results of the analysis,
outlining the worst-case execution paths found.

2 seL4 Design Features
The seL4 microkernel has several properties that assist with
automated static analysis. First and foremost is that its code
base is small. We analysed the ARM version of the seL4 ker-
nel, which has around 8 700 lines of C code and 600 lines of
ARM assembly code. Although this is a large body of code
by WCET analysis standards, we found it to be just within
the scalability limit for the implicit path enumeration tech-
nique (IPET) [LMW95]. The full analysis takes two hours to
compute, and is described further in Section 3.

seL4 is an event-based kernel, where a single kernel stack
is shared by all user threads. Context switching between user

Code size 98704 bytes
Lines of code 8642

Number of functions 84
Number of basic blocks 1922

Number of loops 68
Number of branches 1410

Table 1: Properties of the analysed seL4 binary.

threads is performed by changing a variable containing the
currently running thread. In contrast, process-based kernels,
with dedicated per-thread kernel stacks, must switch the stack
pointer during a context switch. This model may be more ef-
ficient in the presence of frequent context switches [Lie93b],
but the event-based model of seL4 aids static analysis signif-
icantly, as control flow is more structured.

Other features that simplified our analysis are listed below.
Many of these arose due to requirements of the formal verifi-
cation process, without any regard to a WCET analysis.

• seL4 never stores function pointers at run-time, so all
jumps can be resolved statically (with the help of sym-
bolic execution).

• seL4 never passes pointers to stack variables. This sim-
plifies the analysis of memory aliasing for WCET.

• The task of memory allocation is delegated to userspace,
avoiding complex allocation routines within the kernel.

• There are very few nested loops within seL4 – automat-
ically identifying nested loops at the assembly level and
their loop relations is not an easy task in the presence of
heavy compiler optimisations.

• Unbounded operations (such as object deletion) contain
explicit preemption points. If an interrupt is pending at
a preemption point, seL4 will postpone the current oper-
ation and return to a safe point to handle the interrupt.

seL4 is accompanied by a large body of machine-checked
proofs which contains thousands of invariants and lemmas. It
should be possible to incorporate these into a WCET analysis
to assist in excluding many infeasible paths.

One issue that arose during the analysis of seL4 is that in
two places mutually-recursive functions are used. The for-
mal proof guarantees termination and actually proves that the
functions do not call themselves more than once. This knowl-
edge makes the analysis easier, as we could simply virtually
inline each function at most twice. However, for this analysis,
we chose to unwind the recursion manually.

The design of seL4, in conjunction with formally-proven
guarantees, has greatly assisted in performing an automated
static analysis.

3 Analysis Method

We performed a static analysis of the seL4 kernel binary to
compute a safe upper bound of its WCET. For comparison,
we constructed the worst-case scenarios detected by the anal-
ysis and executed them on real hardware. This gives a indi-
cation of how tight the analysis is. Table 1 summarises the
relevant properties of the code analysed.
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3.1 Static Analysis
We analysed seL4 for its interrupt latency by examining the
worst-case execution time of all possible paths through the
kernel, accounting for preemption points. Non-preemptible
paths can begin at a number of places, such as entry to a sys-
tem call or page-fault handler. Interrupts can be processed
only once control is returned to the user. In seL4, explicit
preemption points detect if an interrupt is pending within a
long-running loop and if so, postpones the current operation
and returns up the call stack. The interrupt latency is the sum
of the WCET of the longest kernel path and the time taken to
dispatch the interrupt to a user thread.

The seL4 binary we analysed was compiled with
gcc using -O2 optimisation level and additionally the
-fwhole-program flag, which enables gcc to perform very
aggressive optimisation and inlining of code. This means that
most function boundaries are lost and functions are on aver-
age much larger because of inlining. The compiled binary
also exhibits optimisations such as tailcalls and loop rotation.

Despite having well structured code, seL4 violates this
structure in one specific code path. seL4 features a highly
optimised routine for handling the most common IPC oper-
ations, known as the IPC fastpath; it improves the average
time for these IPC operations by an order of magnitude. It
does this using a continuation-based control flow, avoiding
the need for stack unwinding. Unfortunately, the analysis tool
currently does not support continuations—it expects all func-
tions to return. As a result, we needed to disable the IPC fast-
path at compile time. However, we do not expect this to affect
our analysis, given the aforementioned presence of order-of-
magnitude slower operations elsewhere in the microkernel.

The control flow graph (CFG) of seL4 is extracted from the
binary, using symbolic execution to resolve indirect branches
(via a register) and jump tables generated by switch state-
ments. This step was performed without any user guidance,
made possible by the absence of function pointers in seL4’s
sources.

The iteration counts of loops were specified by hand. Most
have fixed bounds and could have been determined automati-
cally with a rudimentary analysis. Some, however, depend on
the state of the system—e.g. the number of runnable threads.
These properties are all bounded by total physical memory.
To support this we allow the user to provide an expression re-
lating the iteration count to constants such as the size of phys-
ical memory. Due to heavy inlining by the compiler, none of
the iteration counts in the binary are context-sensitive, even
though some are at the source level (e.g. memcpy).

The control flow graph, along with the loop iteration
counts, is passed to a modified version of Chronos 4.0, from
NUS [LLMR07]. We adapted Chronos to support the ARM
processor. Chronos uses the IPET method [LMW95], which
converts the control flow graph into a system of linear equa-
tions (or inequalities) with integer coefficients. Chronos
extends the basic IPET model with support for instruction
caches and pipeline modelling. All function calls are virtu-
ally inlined so that the analysis is context-aware. This inlin-
ing results in almost 400 000 CFG nodes (basic blocks) in the

analysis.
The output of Chronos is a system of linear constraints

and an objective function to maximise subject to those con-
straints. With 400 000 CFG nodes, it creates two million vari-
ables and 2.5 million equations.

Finally, an off-the-shelf integer linear programming solver
is used to compute the final WCET value. We used IBM’s
ILOG CPLEX Optimizer to compute the solution. This is
the most computationally intensive step of the process, and
takes up to two hours for the entire seL4 kernel, when per-
formed on an Intel Core 2 Duo running at 2.93 GHz. How-
ever, smaller portions of the kernel are solved much faster—
typically within a minute or less.

3.2 Hardware Measurements
Our test platform for measurements is a Beagleboard-xM
with a TI DM3730 processor. This processor has an ARM
Cortex-A8 core running at 800 MHz, with a 32 KB L1 in-
struction cache and a 32 KB L1 data cache, both 4-way set-
associative. The experiments were configured to use 128 MB
of physical memory. The latency of a read or write to physical
memory on this platform was measured to be 80–100 cycles.

The L1 caches on the Cortex-A8 have an unspecified ran-
dom replacement policy. This makes simulating the exact
cache behaviour impossible, and effectively forces any safe
cache analysis to assume a direct-mapped 8 KB cache. Fur-
thermore, it makes it infeasible to construct a true worst-case
scenario on hardware.

The Cortex-A8 has a dual-issue pipeline, which is not ac-
counted for in our processor model. Whilst it is in theory
possible to force the Cortex-A8 to single issue, this oddly re-
quires a “high security” version of the processor which is not
readily available. This means that we can expect the observed
results to be up to 2x faster than computed by static analysis.
Extending the static analysis model to support a dual-issue
pipeline is the subject of future work.

The Cortex-A8 also supports speculative prefetching and
branch prediction. These features were disabled in order to
make measurements more deterministic.

Our experiments also disabled the data cache and L2 cache
during both estimation and real execution, as our analysis
tools do not yet support these on the ARM platform. This
allowed us to confidently validate our timing model.

3.3 Open vs. Closed Systems
We analyse seL4 for two different use-cases—open systems
and closed systems. We define an open system to be one
where the system designer cannot prevent arbitrary code from
executing on the system. This is in contrast to a closed sys-
tem, where the system designer has full control over all code
that executes.

In an open system, real-time subsystems may execute in
conjunction with arbitrary and untrusted code (although con-
fined by the capabilities provided to them). seL4 uses a strict
priority-based round-robin scheduler. In such a scheme, time
sensitive threads must be assigned the highest priority on the
system so that they may run as soon as required (typically
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System call Description
seL4 Send() Blocking send to an endpoint.
seL4 Wait() Blocking receive on an endpoint.
seL4 Call() Combined blocking send/receive.
seL4 NBSend() Non-blocking send to an endpoint

(fails if remote is not ready).
seL4 Reply() Non-blocking send to most recent

caller.
seL4 ReplyWait() Combined reply and wait.
seL4 Notify() Non-blocking send of a one-word

message.
seL4 Yield() Donate remaining timeslice to a

thread of the same priority.

Table 2: System calls permitted in a closed system.

when triggered by a hardware interrupt). seL4’s design dis-
ables interrupts whenever in the kernel, except at a few select
preemption points. As a result, the interrupt latency for the
highest-priority thread is determined by the worst-case exe-
cution time of all possible operations performed by seL4.

In a closed system, the system designer has full control
over all operations performed by the kernel. Therefore she
can ensure that operations that are known to be long-running
do not occur at critical times, e.g. by allocating all resources
at boot time and avoiding delete operations at run time. The
interrupt latency in this scenario is defined by the WCET of
a select number of paths within the kernel which are used by
the running system—primarily inter-process communication
(IPC) operations, as well as thread scheduling. The permitted
system calls are listed in Table 2.

Note that seL4 Call() can be invoked on an IPC object
to perform IPC operations, but invoking it on other object
types may lead to the creation or deletion of kernel objects.
We exclude these latter operations from the analysis of closed
systems, allowing only the IPC-related uses of seL4 Call().

4 Experimental Results
4.1 Open System
In an open system, the analysis pointed us to two interesting
cases which were clear candidates for the worst-case execu-
tion path in seL4.

The first case arises due to the nature of IPC in seL4.
Threads do not communicate with each other directly. Rather,
they construct IPC “endpoints” which act as communication
channels between threads. Multiple threads are permitted to
wait to receive (or send) a message on a single endpoint—
threads join a queue and are woken in turn as partners arrive.
If the endpoint is deleted whilst there are still multiple threads
waiting, each of these threads is removed from the endpoint
queue and added to the scheduler’s run queue. A malicious
program (looking to force a deadline miss), could allocate
as many threads as possible and construct this scenario. We
constructed such a scenario with 91 000 threads (limited by
physical memory). The results are shown in Table 3.

The second case arises due to a scheduler optimisation used

Case Computed Observed Ratio
Endpoint deletion 215.3 ms 152.8 ms 1.41
IPC (open system) 566.2 ms 272.8 ms 2.08

IPC (closed system) 208.3 µs 118.2 µs 1.76

Table 3: Computed upper bound versus measured observa-
tions for feasible worst-case paths with data caches disabled.

in seL4 known as lazy scheduling [Lie93b]. In microkernel-
based systems where IPC is frequent, a thread blocking on
an IPC operation will often be made runnable again before
the scheduler even needs to reconsider it for execution. To
benefit from this observation, seL4 does not immediately re-
move threads from the run queue, but defers that work until
a thread is selected to be scheduled. This leads to the ob-
vious worst-case scenario where many non-runnable threads
pollute the run queue. The scheduler must iterate over all of
these threads, inspect and then dequeue them, until it finally
finds a runnable thread (or the idle thread).

We constructed this scenario, using the
seL4 TCB Suspend() operation which suspends a thread
but does not immediately dequeue it from the run queue. The
second row of Table 3 compares our computed value with
measurements observed on hardware. In this case, a system
with 128 MB memory can create 119720 threads.

4.2 Closed System
Within a closed system, where only the system calls outlined
earlier in Table 2 are permitted, our analysis detects an in-
feasible worst-case scenario. The seL4 Reply() operation
is used to respond to the most recent message received with
seL4 Wait(). A one-time endpoint used to respond to the
most recent sender (known as a reply cap) is stored in a ded-
icated location in each thread control block (the reply slot).
The kernel must delete the existing reply cap before any call
to seL4 Wait() and after a call to seL4 Reply().

The analysis detected that deleting this reply cap could lead
to a long delay at the next reschedule, for the same reasons as
outlined in the first scenario of the open system, described
earlier. Even though we excluded explicit delete operations
from our analysis, this implicit operation was exposed. How-
ever, it is impossible to construct this scenario, as reply caps
can only be used by other threads if they are first removed
from the reply slot. Therefore the delete operation on the re-
ply slot will only affect the schedulability of one thread.

With this knowledge, we could add an extra constraint
which excluded this infeasible path. The new analysis de-
termined that all IPC send or receive operations became can-
didates for the new worst-case path. It identified two factors
which affect the IPC operation’s execution time. The first
is that endpoints are addressed using a structure resembling
guarded page tables [Lie93a]; decoding the address involves
traversing a graph up to 32 levels deep. The second is, unsur-
prisingly, the size of the message to be transferred, on which
seL4 places a hard limit of 120 32-bit words. The combina-
tion bounds the worst-case interrupt latency of a closed sys-
tem to a very reasonable limit.
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This case was also reproduced on hardware using
seL4 ReplyWait() to trigger it. The results are shown in
the final row of Table 3.

4.3 Analysis of Results
Table 3 shows that there is a factor of up to 2.08x between
the observed and computed execution times. This disparity
can be attributed to both the random cache replacement pol-
icy of the instruction cache, as well as the dual-issue pipeline
of the Cortex-A8. With a random cache replacement policy,
constructing a true worst case on hardware is extremely dif-
ficult. Modelling the Cortex-A8 pipeline perfectly is also a
difficult task. Given that the memory access latency on fast
processors far outweighs the impact of pipeline effects, a sim-
pler pessimistic pipeline model is sufficient. None of these
factors cause the static analysis to be unsound, and therefore
the computed values can be confidently used as a safe upper
bound for hard real-time systems.

It should be noted that these results are much worse than
reality as the data cache has been disabled both on hardware
and in the model. As memory latency is up to 100 cycles on
this platform, this adds a significant factor to the execution
time of these test cases.

Certain code paths are guaranteed by the formal proof
never to execute. These paths could potentially be pruned
by incorporating invariants from this proof into the WCET
analysis.

5 Conclusions and Future Work

As the trend of feature integration in embedded devices con-
tinues to gain momentum, integrating numerous complex
software stacks in a fault-tolerant manner will be a necessity.
In this paper, we assert that microkernels can be used as the
basis for hard real-time systems that nonetheless feature such
integration. The primary requirement placed on these micro-
kernels is a reasonable guarantee on their interrupt latencies.

A tight static analysis of a microkernel to determine safe
WCET bounds is in fact feasible, as demonstrated by our
analysis of seL4. There are many features of seL4 that both
ease the analysis process and reduce the interrupt latency,
without the need for a fully preemptible kernel.

For the feasible paths in seL4, the disparity between our
calculations and measurements arises for two reasons: first,
the non-determinism of the target hardware, and second, sur-
mountable limitations of our analysis tools.

Future work will focus on adding support for the data
cache, and automatically incorporating proof invariants into
the WCET analysis to further tighten the computed upper
bound.

At present, seL4 can be used in a closed system with rea-
sonably small guaranteed response times. In an open system,
allowing untrusted code to execute, the response time guaran-
tees are still bounded but too large to be useful, and highlight
areas where seL4’s real-time behaviour can be improved.
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